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ABSTRAKT

Analyza spol'ahlivosti systémov je zlozity proces zahfiiajici mnoho tloh. Mnohé systémy,
s ktorymi sa v praxi stretdvame, ozna¢ujeme ako komplexné systémy. Okrem beznych tloh
a problémov analyzy spolahlivosti sa musime pri analyze komplexnych systémov
vysporiadat’ s velkym rozsahom takychto systémov, roznorodostou komponentov
a vyberom efektivnych algoritmov. KI'iCovym nastrojom analyzy je Struktirna funkcia,
ktora popisuje topoldgiu systému. Efektivna reprezentacia Strukturnej funkcie komplexnych
systémov je preto dolezitou sucastou analyzy. V praci sa zameriavame na reprezentaciu
Struktarnej funkcie pomocou rozhodovacich diagramov, ktoré dokdzu reprezentovat aj
rozsiahle funkcie. Efektivna tvorba a spracovanie diagramov su preto hlavnymi témami tejto
prace. Skiimanie vlastnosti Struktirnej funkcie nam umoznuje skiimat’ vlastnosti systému,
ktory funkcia popisuje. Praca sa preto venuje analyze a efektivnej implementécii
existujiicich algoritmov. Dalej praca predstavuje niekol’ko vylepSeni existujucich
algoritmov, ktoré maju za ciel zrychlenie algoritmov alebo ul'ahéenie ich pouzitia. Hlavnymi
prinosmi prace su predstavenie nového univerzalneho algoritmu na vypocet logickych
derivacii, uprava existujicich algoritmov na pravdepodobnostni analyzu, ktord umoziuje
pouzitie tychto algoritmov s ¢asovo zavislymi pravdepodobnostami stavov komponentov
S pouzitim symbolickych vypoctov. Posednym dolezitym prinosom je implementacia
softvérového nastroja na analyzu spol’ahlivosti s pouZzitim rozhodovacich diagramov, ktory

implementuje vSetky navrhnuté a upraven¢ algoritmy.

KPucové slova: analyza spol'ahlivosti; bindrny rozhodovaci diagram; ¢asovo zavisla analyza
spolahlivosti; pravdepodobnostnd analyza spolahlivosti; softvérové spracovanie

rozhodovacich diagramov; Struktirna funkcia; viachodnotovy rozhodovaci diagram
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ABSTRACT

System reliability analysis is a complicated process involving various tasks. Many of the
systems we encounter in practice are referred to as complex systems. In addition to the usual
reliability analysis tasks and problems, when analyzing complex systems, we have to deal
with the large scale of such systems, the variety of their components, and the selection of
efficient algorithms. A key analysis tool is the structure function, which describes the
topology of the system. An efficient representation of the structure function of complex
systems is, therefore, an important part of the analysis. The thesis focuses on the
representation of the structure function using decision diagrams, which can also represent
large-scale functions. Efficient diagram creation and processing are therefore the main topics
of this thesis. Exploring the properties of the structure function allows for the investigation
of the properties of the system that the function describes. Therefore, the thesis deals with
the analysis and efficient implementation of existing algorithms. Furthermore, the thesis
presents several improvements to the existing algorithms that aim to make the algorithms
faster or easier to use. The main contributions of the thesis are the introduction of a new
universal algorithm for the computation of logical derivatives, and the modification of
existing algorithms for probabilistic analysis, which allows the use of these algorithms with
time-dependent probabilities of the states of the components using symbolic computations.
Finally, an important contribution is the implementation of a software library for reliability
analysis using decision diagrams. The open-source library implements all the proposed and

modified algorithms.

Keywords: Binary Decision Diagram; Multi-valued Decision Diagram; probabilistic
reliability analysis; reliability analysis; software processing of decision diagrams; structure
function; time-dependent reliability analysis
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Introduction

Reliability analysis of asystem is acomplicated process involving several steps.
Considering the nature of the system and the aim of the analysis, we can describe the system
either as a Binary-State System (BSS) [1], [2] or a Multi-State System (MSS) [3], [4]. The
literature offers different mathematical tools for the description of such systems. The one
that we focus on in this thesis is called structure function [2], [5]. The structure function is
a mapping from the states of components of the system to the state of the entire system. The
function alone allows us to perform a topological analysis [6] of the system allowing us to
compare different system topologies. Furthermore, if component state probabilities are
available, we can perform a probabilistic analysis and compute more system characteristics
such as system availability [1], [2]. Also, we can compute various important measures that
quantify how individual components influence the reliability of the system [7].

Depending on the type of the system, the structure function is either a Boolean
function [8], a Multiple-Valued Logic (MVL) function [9], or an integer function [10].
Software processing and analysis of such functions require a suitable representation. One
such representation is a decision diagram. A decision diagram is a directed acyclic graph
that is designed for the efficient representation of discrete functions. Two basic types of
decision diagrams exist. The first, simpler, type is the Binary Decision Diagram (BDD) [11]
designed for the representation of Boolean functions. The second, more general, type is the
Multi-valued Decision Diagram (MDD) [12] introduced for the representation of MVL
functions and integer functions. BDDs and MDDs can be used to represent the structure
functions of BSS and MSS respectively.

Systems subjected to reliability analysis exist in different topologies and
configurations. Some of those systems are regarded as complex systems. The complexity
may originate from different properties of the system. For example, having components of
different natures or having dependent components. Moreover, systems consisting of
numerous components are also regarded as complex. Such properties increase the
complexity of the structure function representing the system, which, consequently,
complicates the analysis of such systems. Therefore, the development of new and
improvement of existing algorithms and approaches to account for increasing complexity is
an actual and important problem in reliability analysis.

Decision diagrams are generally regarded as a very efficient representation of the

structure function, however, the nature of complex systems and the ongoing increase in
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complexity pose pressure on the continuous improvement of existing techniques and the
design of new approaches. Therefore, the principal goal of this thesis is the optimization of
the application of decision diagrams in the reliability analysis of complex systems, which

results in the following research topics:

e analysis of existing approaches and algorithms utilized in the representation of
the structure function by decision diagram and in their subsequent analysis;

e implementation of a performant and robust software library for the creation and
manipulation of decision diagrams;

e evaluation, adjustment, and improvement of existing algorithms for the creation
and manipulation of decision diagrams;

e creation of new decision diagram algorithms and methods specialized for the use
case of topological and probabilistic reliability analysis.

The thesis has the following structure. Chapter 1 introduces the basics of a general system
reliability analysis process. It starts with the description of the principal steps of the analysis,
starting with the identification of the system type description in the form of the structure
function. Then it proceeds with the presentation of typical system structures with the
emphasis on the properties of a complex system. Finally, the last part focuses on the
presentation of various system reliability characteristics, topological analysis, probabilistic
analysis (time-independent and time-dependent variants), and importance analysis.

Chapter 2 deals with discrete functions and their relation to reliability analysis. It
starts with definitions of selected discrete function types — namely the Boolean function,
MVL function, and integer function — that are relevant to the reliability analysis described
in Chapter 1. A considerable part of the chapter that follows focuses on logical differential
calculus (specifically the logic derivatives) as a powerful tool for the analysis of discrete
functions followed by the description of its applications in the aforementioned reliability
analysis. The last part of the chapter introduces selected representations of discrete functions
with an emphasis on their efficiency — which introduces the content of the next chapter.

Chapter 3 introduces the core topic of the thesis which is the decision diagram. It
starts with the theoretical description — starting with BDDs and proceeding to the most
general form used in the thesis — MDD representing an integer function. The main part of
the chapter deals with practical aspects of the implementation of decision diagrams and also
introduces our supporting software tool TeDDy — which is one of the practical contributions
of the thesis. Then it focuses on general MDD manipulating algorithms. The chapter
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concludes with a description of algorithms that are designed specifically for reliability
analysis with the utilization of decision diagrams. Finally, the chapter also presents a new
algorithm for the dynamic merging of decision diagrams and a generalized algorithm for the
calculation of system state frequencies — which are one of the new results of the thesis.
Chapter 4 is fully dedicated to the evaluation of research problems introduced in
Chapter 3. Each of the problems contributes either to the improvement of dynamic diagram
creation or diagram evaluation. The chapter contains experimental evaluations of existing
algorithms as well as novel algorithms. The first experiment deals with the analysis of the
order of diagram merging and its influence on the dynamic creation process. The following
experiment verifies that the generalized algorithm for diagram merging proposed in
Chapter 3 is applicable in practice and simplifies the merger of diagrams using d-ary
operations. The next experiment shows that the algorithm that we proposed for the
calculation of system state frequencies is the simplest and fastest solution for BSS as well as
MSS. Finally, the last contribution that the chapter introduces is a new universal algorithm
for the calculation of any logic derivative. A description of the algorithm is followed by an
experimental comparison with generic approaches — which shows that our algorithm is
considerably faster. We consider this as one of the significant contributions of the thesis.
Finally, Chapter 5 addresses research problems that deal with the probabilistic
reliability analysis. It first introduces two existing principal approaches to the calculation of
so-called node traversing probabilities, which is an essential part of the probabilistic
analysis. Then, it proceeds with the experimental comparison of the two approaches. The
contribution obtained from the comparison presents use cases that are suitable for each of
the two approaches — showing that both approaches are worth implementing in software
tools and that their correct usage can improve the speed of probabilistic evaluation.
Furthermore, the chapter deals with time-dependent component state probabilities. It
discusses two possible approaches. The first, simpler, one uses the existing algorithms with
little modifications and the second uses manipulation of symbolic expressions. It concludes
with a comparison of the two approaches showing that asimpler approach performs
significantly better. However, the contribution lies in the description and verification of the

utilization of symbolic expressions and their possible advantages.

11
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1 Reliability Analysis

A system is a general term describing an entity consisting of components. A component is
a further indivisible part of the system, which contributes to the functioning of the system.
Thus, the state of the components determines the state of the system. Typical reliability
analysis involves tasks such as identification of the importance of individual components,
identification of situations that cause degradation of system performance, or designing the
system to meet certain requirements. This chapter deals with the description of the steps of

the reliability analysis process.

1.1 Number of system states

The first step in the reliability analysis is to identify the number of system states. In this step,
we need to consider the properties of the examined system as well as the aim of the analysis.
In the following sections, we introduce two principal approaches to the description of the
number of system states.

1.1.1 Binary-State Systems

The first and the simplest approach is to consider a system to be a Binary State System
(BSS) [1], [2]. A BSS can be in one of two states that are functioning and failed, often
denoted using numbers 1 and 0 respectively. The decision is clear for systems that are binary
in their nature. An example of such asystem is alogic circuit[13], [14] where the
components — logic gates — can either function or not. The binary state approach is also
suitable for a system in which even a slight degradation from the perfectly functioning state
can cause disaster or damage. Typical examples of such systems include nuclear power
plants [15] or aviation systems [16]. Naturally, we can use the BSS approach for a system
that does not belong to either one of the above-mentioned types, for example, for a system
where performance levels are not discrete. In such acase aprincipal task is to find

a threshold separating working and failed states.

1.1.2 Multi-State Systems

One of the advantages of BSS is the simplicity of the model. However, the binary approach
does not suit well for all the system types. Many systems can operate at several discrete
performance levels. A representative example of such systems is different types of
distribution networks [17] that operate using their full capacity but can also operate at
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multiple levels of reduced capacity. We usually describe the states as e.g., perfectly
functioning, functioning, and failed and denote them using 0 for the failed state, m — 1 for
the perfectly functioning state (where m is the number of states), and natural numbers in
between 0 and m — 1 for the intermediate states. Because of the multiple states, we designate
such systems as Multi-State Systems (MSS).

The number of components and system states can vary depending on the type of the
system. Consequently, we recognize two types of MSS. The first type is homogeneous MSS
where each component and the system itself have the same number of states. On the other
hand, nonhomogeneous MSS and its components can have a different number of states. We
usually encounter nonhomogeneous MSS when we examine systems that consist of
components that are different in their nature. An example of such systems is healthcare

systems [18], [19] that usually include humans, hardware, and software.

1.2 Structure Function

1.2.1 Structure Function Definition

After the identification of the number of system and component states, we proceed with the
creation of a mathematical description of the examined system. The description must include
the dependency of the state of the system on the state of its components. We call such
a description a structure function. The structure function of a BSS is a mapping of the
following form [1], [20]:

¢ (x1, X9, .., X) = Pp(x):{0,1}" - {0,1}, (1.1)
where n is the number of components of the system, x; models state of the ;™" component for
i=12..,nand x = (x4, x5, ..., X,) IS a state vector that holds the states of all components.
Later in the thesis, we will show that the definition (1.1) agrees with the definition of the
Boolean function.

We can view ahomogeneous MSS as ageneralization of BSS. Therefore, its

structure function is a similar mapping of the form [5]:
d(x1, %5, ., %) = p(x):{0,1, ..., m—1}"* > {0,1,..., m — 1}, (1.2)

where n is the number of components of the system, m is the number of system and
component states, x; models state of the i"™ component for i =1,2..,n and x =

(%41, %5, ..., x,,) is the state vector. Finally, we consider a nonhomogeneous MSS where
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components and the system can have a different number of states. Its structure function is

a further generalized mapping of the form [5]:

d(xq, x5, 0, x) = Pp(2):{0,1,...,m;y — 1} x .. x{0,1,...,m, — 1}

-{01,.., m—1}, 3

where n is the number of components of the system, m is the number of system states, m; is
the number of states of the i component, x; models state of the i"™ component for i =
1,2..,n and x = (xq, Xy, ..., X,,) is the state vector. Definitions (1.2) and (1.3) agree with
the definition of the Multiple-Valued Logic function and integer function that we will
describe in the following chapter.

Since the structure function describes a system, we can study the properties of the
system by studying the properties of the structure function. One of the properties is the
monotonicity of the function. If the structure function of asystem is monotonic
(non-decreasing), we say that the system is coherent [1], [21] i.e., there are no situations in
which failure or degradation of performance of a component results in repair or improvement
of the performance of the system. The opposite of a coherent system is a noncoherent
system. For a structure function of a BSS to be monotonic, it must hold for each pair of state

vectors of the form (.;, x) that:

¢(1;,x) = ¢(0;,x), (1.4)
where the notation (a;, x) denotes a state vector where the value of x; = a. Similarly, for
a structure function of an MSS to be coherent, it must hold for each pair of state vectors of
the form (.;, x) that:

d)(Sl',X) = d)((S - 1)i,X), (15)

where s = 1,2, ...,m; — 1.

1.2.2 Cut and Path Sets

One of the useful characteristics of a system is a set of components whose simultaneous
operation or failure is essential for the state of the system. Two significant types of sets for
the reliability analysis are minimal cut sets and minimal path sets. A cut set of a BSS is a set
of its components whose simultaneous failure causes failure of the system given that the
system was operational. For a set to be a Minimal Cut Set (MCS) [22] it must hold that
removal of any component from the set would result in the set no longer being a cut set [1],
[7] i.e., if we consider that all the components of the MCS are failed then a repair of any of
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the components causes the system to become functional. Each MCS has a corresponding
state vector known as a Minimal Cut Vector (MCV) [23].

To extend the idea of the MCSs and MCVs to MSS we consider each system state
individually. Both MCS and MCV can be generalized for MSS, but the generalized
definition is more intuitive when we consider MCV. We say that a state vector is MCV with
respect to state j of the system if an improvement of the state of any component whose state
can be improved (the component is not perfectly functioning) causes the system to reach
a state at least j given that the system is in a state worse than j for the state vector.

Analogous to cut sets are path sets. A path set of a BSS is a set of components whose
simultaneous functioning ensures the functioning of the system. The set is a Minimal Path
Set (MPS) [22] if the removal of any component from the set would cause the set to no
longer be a path set [1], [7]. A state vector corresponding to an MPS is called a Minimal
Path Vector (MPV). MPV can also be generalized for MSS. We say that a state vector is
MPV with respect to state j of the system if degradation of performance of any component
causes degradation of performance of the system to a state worse than j given that the system

is in state j or better for the state vector.

1.3 Basic System Types

Real-world systems exist in different topologies and configurations. Some are simple and
we encounter them either as standalone systems or as a part of other systems and some are
more complicated because of their properties or size. In this section, we introduce typical

examples of both kinds.

1.3.1 Series and Parallel Systems

Series and parallel systems are one of the simplest system types. Series BSS is functioning
if and only if all its components are functioning. Similarly, parallel BSS is functioning if and
only if at least one of its components is functioning. Fig. 1.1 shows Reliability Block
Diagrams (RBD) representing a series and a parallel system consisting of three components.
The system is functioning if and only if there exists a path in the diagram connecting left and

right black circles and all the components on the path are functioning.
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X1

o X X2 Xs —@ | X2

X3

Fig. 1.1 Reliability Block Diagrams depicting series system (left) and parallel system (right)

The structure function of a series BSS has the following form [1], [2]:

n

Gserial (X) = /\xi, (1.6)

i=1
where the A denotes logical conjunction (AND) and n is the number of components.

Similarly, the structure function of a parallel BSS has the following form [1], [2]:

n

d)parallel(x) = \/xi' 1.7)

i=1

where the v denotes logical disjunction (OR) and n is the number of components.

Naturally, MSS also exists in series and parallel topologies. The literature offers
several functions that we can use to represent series and parallel connections. For the series
topology, a sensible option is to use the min function (that returns the minimum of its
arguments). To explain the rationale behind the min function let us consider the distribution
network depicted in Fig. 1.2 and assume that each edge can be in one of three states offering
different transportation capacities. Obviously, the throughput of the network from the source
node (A) to the sink node (B) is limited by the edge with the lowest capacity — the minimum
of the capacities of all edges.
A reasonable function to use for the parallel topology is the max [3], [24] function (returns
the maximum of its arguments). To rationalize the choice function let us consider the
distribution network depicted in Fig. 1.3 and, again, assume that each edge can be in one of
three states offering different transportation capacities. Also, let us assume that the
processing capacity of node B is limited — it can process at most ¢, Units, where c,, ., 1S
the maximum of the capacities of the edges. Hence, the throughput of the network is the

maximum of the capacities of the edges.

@Xl ®——@ Xd@

Fig. 1.2 Distribution network with series topology and unreliable edges
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Fig. 1.3 Distribution network with parallel topology and unreliable edges

Considering an alternative where the processing capacity of node B is not limited, we may
see another sensible alternative, which is to use the sum function (returns the sum of its

arguments) to describe the throughput.

1.3.2 Series-parallel Systems

We usually encounter series and parallel systems as parts of a more complicated system type
—a series-parallel system, which is a result of combining series and parallel topologies. Since
the system is a combination of series and parallel systems, we can use the properties of those
systems to describe the series-parallel system. Its structure function is therefore
a composition of AND and OR operations in the case of BSS and e.g., min and max
operations in the case of MSS. Let us consider the system depicted using RBD in Fig. 1.4.
Assuming the system is BSS, its structure function has the following form:

d(x) = x1 A (X2 V X3). (1.8)
Notice that instead of a variable, the second argument of the A operator is the (x, V x3)

expression. Using such nesting expressions, we can describe any series-parallel system.

X2

o1 xi

X3

Fig. 1.4 Reliability Block Diagram depicting series-parallel system consisting of three components

RBD allows us to neatly visualize the MCSs and MPSs of a system. Let us consider the
system depicted in Fig. 1.4 with two MCSs {1} and {2,3} with corresponding state vectors
(0,1,1) and (1,0,0) respectively. The notation {2,3} denotes a set containing the second and
third components respectively. Notice that if any of the 0 elements in the vector would
improve to 1 the system would become operational. Fig. 1.5 shows the MCSs in the RBDs
using the grey color for the elements of the set. Furthermore, let us consider the state vector
(0,0,0). The vector corresponds to the cut set {1,2,3}. The set is not MCS because if we

remove, for instance, the component 1 from the set the resulting set will still be a cut set.
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X2 X2

o1 Xy & x

X3 X3

Fig. 1.5 Minimal Cut Sets (grey) of a series-parallel system

Similarly, the system has two MPSs {1,2} and {1,3} with corresponding state vectors (1,1,0)
and (1,0,1). If any of the 1 elements would decrease to 0, the system would stop being
operational. Fig. 1.6 shows the MPSs in the RBDs using the white color for the elements of
the set.

X2 X2

@ x @ x

X3 X3

Fig. 1.6 Minimal Path Sets (white) of a series-parallel system

Finally, let us consider the state vector (1,1,1), which corresponds to the path set {1,2,3}.
The system in the state described by the set is operational. If we remove component 2 from

the set, the system would still be operational. Therefore, the set is not an MPS.

1.3.3 K-out-of-n Systems

K-out-of-n system consists of n components and is functioning if at least k components are
functioning. It is one of the common system types that we encounter in practice in areas such
as software and hardware engineering [25]. The nature of the system is ideal for providing
redundancy and therefore increasing fault tolerance [26] of the system. For example,
if a k-out-of-n system serves as a subsystem of some bigger system, it can operate even
when some of its components fail and therefore provide the time needed to either repair or

replace failed components.

1.3.4 Complex Systems

A considerable number of systems that we encounter in practice are so-called complex
systems. The complexity may have distinct causes for different system types. One of the
more obvious properties is the number of components. For example, we consider
a series-parallel system with a substantial number of components [24] to be a complex
system. In the analysis of the system, we need to put a great emphasis on the efficient

representation of the structure function. Moreover, various noncoherent systems are also
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complex. In this case, the reason for the complexity is that certain algorithms used in
reliability analysis assume coherency and therefore are not applicable. An example of
a system type from this category is logical circuits [14], especially with a higher number of
gates. Finally, the complexity may also originate from the different nature of components of
the system, which is often a case for nonhomogeneous MSS. We may encounter such
systems in the analysis of healthcare systems [27] where different elements such as humans,
software, and hardware interoperate within asingle system. A challenging task in the
analysis of such systems is the development of algorithms and a suitable representation for

the system.

1.4 Topological Analysis

The structure function captures the topology of the system allowing us to perform
a topological analysis of the system, which we can subsequently use to compare systems
with different topologies. This sort of analysis can be useful in the process of system design.
A basic measure that we use to compare topologies of MSS is the relative frequency of
a system state j [6]:

Fr=) = TD(¢(x) © j), (1.9)
where ¢(x) is structure function, j € {0,1, ..., m — 1} where m is the number of system
states and TD(. ) denotes truth density of a Boolean-valued function i.e., the relative number
of state vectors for which the function takes value 1. Notice that the structure function ¢ (x)

of an MSS is not a Boolean-valued function. To transform the function into Boolean-valued

form we use the logical biconditional « defined as follows:

p) o) = L o) =J (1.10)

0 otherwise.
Relative frequency can also include multiple states in the form of the relative frequency of

system states greater than j defined as [6]:
m—1
Fr¥ =TD(¢p(x) =j) = ) Frh, (1.11)
h=j

where j € {1,2, ..., m — 1}. The argument of the truth density is defined using the logical

biconditional as:
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0 otherwise’

m-—1
dpx) =)= \/(qb(x) o h) = { Lo =] (1.12)
h=j

where the v operator denotes logical disjunction.
Notice that for BSS we do not need to transform the structure function using the
logical biconditional since the structure function of a BSS is a Boolean function i.e., we can

directly calculate Fr=* = TD(¢(x)) and Fr=0 = 1 — Fr=1,

1.5 Probabilistic Analysis

The topological analysis considers only the topology of a system. It assumes that each state
of a component is equally probable, which however is often not the case. Some components
are more reliable than others, which influences behavior and consequently the reliability of
the system. Therefore, in order to describe and analyze such systems more precisely, we
need to use probabilistic analysis, which considers component state probabilities. These
probabilities can be either time-independent or time-dependent and thus we also differentiate

time-independent or time-dependent probabilistic analysis.
1.5.1 Time-independent Analysis

1.5.1.1 Description of States
We denote time-independent probabilities of BSS component states as:
p; = Pri{x; = 1},
l ‘ (1.13)
q; = Pr{x; = 0},

where i = 1,2, ..., n. p;, which is a probability that i"" component is functioning is known as
component reliability, and similarly, a probability that i"" component failed g; is known as

component unreliability. Similarly, for an MSS we denote component state probability as:
Pix = Prix; =k}, (1.14)

wherei =1,2,...,nand k =0,1,...,m; — 1.

1.5.1.2 System Availability

Structure function and component state probabilities allow us to calculate global system
characteristics known as system availability and unavailability. Availability of BSS agrees

with the probability that the system is in state 1 and is defined as follows [1], [2]:

A(p) = Pr{p(x) =1}, (1.15)
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where p = (p1, p2, ---, Pn) 1S @ vector of component reliabilities. The unreliability of a BSS,
which is a complementary measure for the availability and agrees with the probability that

the system is in state 0, is defined as follows [1], [2]:

U(q) = Pr{g(x) = 0}, (1.16)
where q = (q4,q2, ---,q») 1S @ vector of component unreliabilities.

To generalize measures of availability and unavailability for MSS we consider two
sets of system states. The first set contains states worse than state j and the second set
contains state j and all better states. States in the second set represent the acceptable
performance of the system for a particular use case and the state j represents the boundary
state. Then, we define the availability of MSS with respect to state j, which agrees with the

probability that the system is in state j or better, as follows [3], [4], [5]:

A¥ (p) = Pr{op(x) 2 j}, (1.17)
for j = 1,2,...,m — 1. Similarly, we define the unavailability of MSS with respect to state

Jj, which agrees with the probability that the system is in a state worse than j as [3], [4], [5]:

U* (p) = Pr{p(x) < j}, (1.18)
forj = 1,2,...,m — 1. Lastly, let us notice that in the case of an MSS, the vector p is actually

amatrix Ppmaxmy) for i =1,2,..,n — where p;; denotes an element of the matrix.

However, for the consistency with the literature, we keep the notation 4%/ (p).

Measures of system availability and unavailability allow us to examine system
reliability taking into account not only the topology captured by the structure function but
also the probabilities of component states. This allows us to compare not only different
system topologies but also investigate how the reliabilities of individual components
influence the overall availability of the system.

In addition to system availability and unavailability, we can also define probabilities
of individual system states i.e., a probability that a system is in state j [28], which we denote
as Pr{g(x) = j}.

The system states probabilities, availability, and unavailability are closely tied, and

we can compute one in terms of the other using the following formulas [28]:

1— A%(p) ifj =0
Pri¢(x) = j} ={4¥(p) —A¥*'(p) ifj€{L2,...m—-2}
AZm=1(p) ifj=m-—1 (1.19)
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j—1

A2 =) Pr{¢p(x) =j},U% —Zpr{qb(x)—]} (1.20)

J

3
,L

=
II

for j € {1,2,..., m — 1}. Another important characteristic of a system is expected system

performance. Most of the time, the numbers that we use to describe system states are abstract
e., they do not have aphysical meaning. Expected system performance allows us to

describe a system in terms of physical performance using the following definition [28]:

m-—1

0®) = ) oPrigp(®) = j} =00 + Z(o, o)AT @), (L2))

j=0
where o; denotes physical performance associated with system state j. As an example, let us
consider a transportation network that can operate in 4 possible states denoted by numbers
0,1,2, and 3. Physical performance associated with the states are the amounts 0, 100, 200,
and 300 of units respectively that the network can transport. So, for example, if the system
is in state 2 it can transport 200 units. Therefore, if there is a requirement that the network
must be able to transport at least 170 units we need to calculate system availability with

respect to state 2 since it is the first state that satisfies the requirements.
1.5.2 Time-dependent Analysis

1.5.2.1 Description of States

A limitation of the time-independent analysis is the assumption that the component state
probability is a constant. However, if we observe a component of a real-world system, we
would notice that the component state probability evolves. Specifically, the component state
probability usually deteriorates in time. This can be intuitively explained, for example, by
physical wear and tear of technical components.

Since we describe the system as an MSS, we consequently need to describe the
change of state of the i"" component in time. For such a description, we use a state function
z;(t). Unfortunately, the number of ways in which the state of a component can change is
infinite. For instance, let us consider four specific state functions of a 3-state component
depicted in Fig. 1.7. Each chart in the figure describes a possible evolution of the component

state in time.
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Fig. 1.7 Different state functions modeling the behavior of a 3-state component

The set of values of each state function is {0,1, ..., m; — 1} in the most general case of
nonhomogeneous MSS. If we consider all possible functions at time t, then the proportion
of functions that take value s agrees with the probability that i component is in state s.
Consequently, we can introduce a discrete random variable Z; describing all states of the i™"
component [3], [29], [30]:

pis =Pr{Z;=s},s=01,..,m; — 1,

m;—1
Z Pis = 1
s=0

Since random variable Z; changes in time we can define a function of time Z;(t) and then

(1.22)

define a stochastic process as a collection of random variables [5], [31]:
{Z;(t); t = 0}. (1.23)
Finally, we define time-dependent reliability and unreliability of BSS component using the

function of time as:

pi(t) = Pr{Z;(¢) = 1},
q:(t) = Pr{Z;(t) = 0}, (1.24)
pi(t) +q;(t) =1,t > 0.

And time-dependent MSS’s component state probabilities as:

pis(t) =Pr{Z;(t) =s},s=01,..m; — 1, (1.25)
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m;—1
Y p@ =120,
s=0

Subsequently, we can use time-dependent component state probabilities along with the

structure function to define the system state function [1], [5]:

Z(t) = $(Z,(0), Z,(0), ..., Z, (1)) = $(Z(D)), (1.26)

where Z(t) is a vector of component state functions.

1.5.2.2 System Availability and Reliability

Reliability is one of the basic time-dependent characteristics of a BSS. It is defined as the
probability that the system operates without failure in the time interval (0, t) given that the

system was functioning at time t = 0:
R() = Pr{T; > ¢t};R(0) = 1, (1.27)
where Ty is arandom variable representing time to failure [1]. A complementary

characteristic to reliability is system unreliability, which represents the probability that the

system will fail in the time interval (0, t) given that it was functioning at time t = 0:

F(t) = Pr{T; < ¢}, F(0) = 1. (1.28)
As time progresses the reliability of the system degrades inevitably leading to a failure.
Maintainability of a BSS is the ability of the system to be maintained in or restored to an

acceptable state. Mathematically, we describe maintainability using a function that defines
the probability that the system maintenance will be performed in a specific period:

M(t) = Pr{T,, < t}, (1.29)
where T, is arandom variable identifying the time needed for system maintenance. The
exact meaning of the random variable depends on the type of maintenance that can either be
preventive or corrective [1]. Furthermore, the ability to be repaired implies that there exist
two types of systems repairable and non-repairable while maintainability describes only the
repairable systems. The characteristics of reliability and maintainability can be combined
into the availability and unavailability of BSS, which we also introduced in the case of time-
independent analysis. The time-dependent system availability and unavailability are defined

using the system state function as [1]:
A@t) = Pr{p(Z(0)) = 1}, (1.30)
U(t) = Pr{¢(Z(t)) = 0} =1 - A(D). (1.31)
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We can generalize system availability and unavailability using the same rationale as in the
time-independent analysis by splitting the systems state into two sets of acceptable and
unacceptable states where the state j is the first acceptable state. Then we define the time-
dependent availability of MSS with respect to state j as [3], [5]:

m;—1

A(0) = Pr{p(2(0) 2 j} = ) Pr{(2(0) = h} (1.32)

h=j
and time-dependent system unavailability of MSS with respect to state j as [3], [5]:

j-1

Uz () =Pr{p(z(v)) < j} = z Pr{¢(Z(t)) = h} = 1 — A%/ (¢). (1.33)
h=0

We can see that aprincipal difference between time-independent and time-dependent
probabilistic analysis is that characteristics such as system availability or component state
probabilities are functions of time in the latter case instead of being a single number in the

former case.

1.6 Importance Analysis

Topological and probabilistic analysis provide means of studying systems using system
characteristics such as system state frequency or system availability. Though we can use the
characteristics to study how for example a change in the component availability affects the
overall availability of the system, the characteristics nevertheless describe the entire system.
For quantification of the influence of individual components, we use characteristics known
as Importance Measures (IMs). The literature presents various IMs. In this section, we
briefly introduce the commonly used ones.

1.6.1 Structural Importance

Structural Importance (SI) represents one of the simplest IMs. It considers only the topology

of the system and is part of the topological analysis. For a BSS Sl is defined as follows [7]:

_ 2(.i,x)e{o,1}n—1(¢(1i' x) — ¢(0;, x)) (1.34)

2n—1

SI;

where (.;, x) is a state vector without i component, {0,1}"*~* represents all possible state
vectors of the form (.;, x) and (a;, x) = (x4, X3, ..., Xj—1, A, X;41, ..., Xy). It agrees with the
relative number of situations when the i component is critical for the system activity i.e.

when the state of the component decides whether the system is functioning or failed. Since
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the Sl considers only the topology, it is useful in situations when we do not have information
about component reliabilities.

The SI measure can also be generalized to describe components of MSS. However,
multiple components and system states allow different interpretations of the measure.
Therefore, the authors proposed several definitions. A definition similar to (1.34)
considering a specific change in the component state can be found in [32].

1.6.2 Birnbaum'’s Importance

One of the limitations of the Sl is that it does not consider component state probabilities.
Birnbaum’s importance (Bl) [33] considers system topology as well as component state

probabilities. The literature offers multiple ways of calculating Bl for BSS [7], [34], [35]:

Bli: Pr{q')(ll-,x) - ¢(0i,X) > 0} (135)
_0A(p) _9U(p)
-SR-Sk (1.36)
=A(1,p) — A(0;,p) = U(0;,q) —U(1; ), (1.37)

where A(1;,p), A(0;, p) denotes system availability if i"" component is always functioning
or failed respectively and similarly U(1;,p),U(0;, p) denotes system unavailability if i*"
component is always functioning or failed respectively.

In [7] the authors present several meanings of the definitions (1.35) — (1.37).
Definition (1.35) agrees with the probability that failure (repair) of the i"" component
coincides with failure (repair) of the system. Definition (1.36) defines Bl in terms of the rate
at which system availability (unavailability) improves (degrades) with the reliability
(unreliability) of the component. Lastly, according to definition (1.37), Bl describes the
decrease in system availability if i component fails or similarly a decrease of system
unavailability if i"" component is repaired.

As with the SlI, the authors proposed several generalizations of Bl for MSS.
A straightforward generalization that considers a specific change in a component state with
respect to system state j following the definition (1.37) is presented in [32] and a more
general version that incorporates multiple changes of a component state can be found in [7].
Also, a different approach for homogeneous MSS can be found in [28].

1.6.3 Criticality Importance

One of the drawbacks of Bl is that it does not consider the current value of the component

availability/unavailability. For example, the component might be highly influential
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according to Bl but the probability that the component will fail might be very small, which
practically reduces the importance of the component since it is almost always functioning.
Criticality importance (CI) is defined in terms of Bl aiming to solve the drawback by
including component availability/unavailability in the calculation. There exist two versions
of Cl one defined in terms of system functioning (Csl) and the other one defined in terms of
system failure (Csl). For a BSS the definitions have the following form [7]:

—pr L
_pr. P
Cali = Bl 7 (1.39)

Csl measures the probability that the system failed because of the i component given that
the system failed and Cs| measures the probability that i component is critical for the system
functioning given that the system is functioning. Since the CI is defined in terms of Bl its
generalization for MSS follows the generalized Bl using availability or unavailability with

respect to a given system state j.

1.6.4 Fussell-Vesely’s Importance

A component contributes to the failure of a system when the failure of the component causes

at least one MCS containing the component to fail. Therefore, a measure known as Fussell-
Veseley’s importance (FVI), which for a BSS is defined in terms of MCSs as follows [7]:

_ Pr{MCSs(i)}

U

where the notation {MCSs(i)} represents the event that at least one MCS containing

(1.40)

component i has failed. On the other hand, the component also contributes to the system's
functioning. Therefore, another way to define FVI for a BSS is in terms of MPSs [7], [36]:

_ Pr{MPSs(i)}
FV,I; = —A(p) )

b (1.41)
where the notation {MPSs(i)} represents the event that at least one MPS containing

component i is functioning. The literature offers several generalizations of FVI [37], [38],
[39] for MSS, however, note that their meaning does not correspond to the FVI defined for

BSS since the generalizations are not based on MCSs but use different approaches.
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2 Discrete Function

In section 1.2, we introduced multiple definitions of the structure function (1.1), (1.2), and
(1.3). Each definition has a form of a discrete function. As we also showed, the structure
function is an integral part of the topological analysis, probabilistic analysis, and calculations
of various importance measures. Therefore, discrete functions are one of the fundamental
tools for reliability analysis. Thus, this chapter focuses on the introduction of discrete
function types that are relevant for the reliability analysis. Also, it deals with the analysis of
properties of discrete functions, which we can subsequently interpret as properties of the
described system. Finally, the chapter presents several approaches to the representation of
the discrete function. Since we aim at the analysis of complex systems with a high number
of components, we mainly focus on the efficiency of the representation. At the end of the
chapter, we introduce decision diagrams as a suitable representation of the structure function

in the analysis of complex systems.

2.1 Discrete Function Types

In general, a function is a mapping from a domain to a codomain. A discrete function is
a function in which each variable takes values from a finite set — the domain of the variable.
The domain of a discrete function itself is a Cartesian product of the domains of all its
variables. We denote the elements of the domain using vector notation x = (x4, x5, ..., X,)
where n is the number of variables and x; denotes i" variable. We sometimes refer to x as
the input vector. The codomain of a discrete function is also finite. In general, a discrete

function is defined as the following mapping [10]:

fx):xj=; D; = L, (2.1)
where the operator x denotes the Cartesian product and n is the number of variables. The
sets D; fori = 1,2, ...,n are domains of variables and L is the codomain of the function (set
of values of the function). Note that the sets D; and £ are finite but not necessarily of the

same cardinalities. Depending on the cardinalities of the sets D; and L, we recognize

different types of discrete functions whose description follows.

2.1.1 Boolean Function

The simplest and the most well-known type of discrete function is the Boolean function.

Variables of the Boolean function take values from the set {0,1}, where the values 0 and

29



UNIVERSITY OF ZILINA

1 are often denoted as false and true respectively. The definition (2.1) simplifies to the

following form [8]:
£, {01}~ {0,1}. (22)
Let us note that the values 0 and 1 can be interpreted differently such as “off—on” or “failed—

working”, depending on the application of the Boolean function.

2.1.2 Multiple-Valued Logic Function

The Multiple-Valued Logic (MVL) function can be seen as a generalization of the Boolean
function where, instead of just two, the MVL variables take values from the set
{0,1, ..., m — 1}, where m € N and m > 1. The codomain of the MVL function is also the
set {0,1, ..., m — 1}. For the MVL function, the definition (2.1) has the following form [9]:

fx):xi=,{0,1,..,m—-1}->{0,1,..,m — 1}. (2.3)

Finally, let us note that in some places in the thesis, we denote the MVL function using the

notation f,, (x) to better express the number of values m.

2.1.3 Integer Function

The integer function further generalizes the MVL function in a way that the domain of each
variable and the codomain of the function are allowed to have different cardinalities. The
definition of the integer function has the following form [10]:

fx):xi,{0,1,...m;—1} - {0,1,..,m—1}, (2.4)
where m; fori = 1,2,...,nand m,m; € Nand m > 1 and m; > 1. To explicitly include the
domains in the notation, we denote the integer function as f;,.;m, m,,..m, (x) in some places.
Notice that the definition (2.4) is almost identical to the general definition of a discrete
function (2.1). However, an important difference is that the definition (2.4) specifies that
elements of the variable domains and codomain are natural numbers starting from

0 up to m; — 1 whereas the general definition (2.1) only specifies that the sets must be finite.

2.1.4 Pseudo-logic Function

The flexibility of the definition (2.4) allows for different special cases. Both Boolean
function and MVL function can be considered as special cases of the integer function.
Moreover, there exists another special case which is the pseudo-logic function. The
important property of the pseudo-logic function is that its codomain is identical to the
codomain of the Boolean function. The pseudo-logic function has the following
definition [10]:
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fx):xi=, {0,1,...,m; — 1} - {0,1}. (2.5)
We also sometimes refer to it as a Boolean-valued integer function. Boolean-valued integer
functions usually emerge when we need to identify elements of the domain of the function
that satisfy some property. For example, let f(x) be an integer function and let g(x) =
f(x) > 1. Then g(x) is a Boolean-valued integer function that evaluates to 1 for x at which

the function f(x) evaluates to a number greater than 1.

2.2 Discrete Function Analysis

The analysis of functions of real and complex variables is an established task in mathematics.
Over the years, numerous methods that use tools of differential calculus to analyze their
dynamic properties have been introduced. The literature offers similar tools for the analysis
of discrete functions as well. Before we proceed with the description of the tools, we need

to introduce the cofactor of a discrete function.

2.2.1 Discrete Function Cofactor

We define the cofactor for the integer function since it is the most general form of the discrete
function that we consider in the thesis. Let f(x) = f (x4, x5, ..., X;,) be an integer function.

Then its cofactor with respect to the variable x; and value a is:

flai, x) = f(x1, X2, o0s Xi1, @ X1, wons Xn—1, Xn), (2.6)
where a € {0,1,...,m; — 1}, i € {1,2,...,n} and m; is the size of the domain of the i®"
variable. The cofactor is a function of n — 1 variables, which simplifies the original function

by setting the value of a variable to a constant a.

2.2.2 Logical Differential Calculus

Logical differential calculus [10], [40] is the mathematical approach that we use to analyze
the dynamic properties of discrete functions. It offers various tools analogous to traditional
differential calculus. The relevant tool for this thesis is a logic derivative. The derivative has

different forms — we start by introducing the simplest ones concerning Boolean functions.

2.2.2.1 Boolean Derivative

The Boolean derivative is a basic type of logic derivative and, as the name suggests, we can
apply it to Boolean functions. To define the derivative with respect to the variable x;, we use

the cofactor of Boolean function and logical exclusive disjunction (XOR) Boolean operator:
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of ()

axi

= f(Oi,x) @ f(li,x). (27)
Alternatively, we can also use a different notation with the same meaning:

of (x) _ {1, if £(0s, x) # f (15, %), (2.8)

dx; 0, otherwise

The derivative defined as (2.7) or (2.8) is a Boolean function of n — 1 variables. It describes
properties of the original function in a way that it evaluates to 1 for elements of the domain
where the change (either from 0 to 1 or from 1 to 0) of the value of i variable causes
a change of the value of the original function (again either from 0 to 1 or from 1 to 0).
Since XOR is a symmetrical operation (it does not depend on the order of its
arguments) the derivative creates pairs of vectors of the domain of the form (0;, x) =
(%1, X2, vy X1, 0, X 41, -, Xp) @Nd (15, x) = (x4, X3, oos Xi—1, 1, Xj41, -, Xp). If the change
of the value of i"" variable in the first vector causes a change in the value of the function,
then the opposite change in the second vector necessarily causes the opposite change in the
value of the function. A disadvantage of this derivative is that it hides information about how
(in which direction) the value of the variable changed and in which direction the value of the
function changed. Therefore, to describe the properties of the function more precisely we

use directional Boolean derivatives.

2.2.2.2 Directional Boolean Derivative

In the general form, we define directional Boolean derivative as [10], [20]:
af(j —>J‘_) _ {1, if £(s;,x) = j and f(5;,x) = j 2.9)
dx;(s »35) (0, otherwise
where j, s € {0,1}. Derivative (2.9) is a function of n — 1 variables that evaluates to 1 for
the vectors of the form (s;, x) for which the function evaluates to j if it holds that the function
evaluates to j when the value of the i*" variable changes from s to 5. Definition (2.9) allows
four specific types of the derivative for four possible combinations of values of s and j. In
first two cases s and j have the same value, which means that a change of the value of i"
variable results in the same change in the value of the function. This type of directional
derivative is known as Direct Partial Boolean Derivative (DPBD) and is defined as [10],
[20]:
0f(1-0) _3f(0-1)

(150 am@ oD Qe A 0ux), (2.10)
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where A denotes logical conjunction. Notice that the definition suggests that both derivatives
are represented by the same function. However, the key difference is in the domain of the
functions. Unlike Boolean derivative (2.7), which is defined for all elements of the domain
of the original function, the DPBD is only defined for elements of the form (1;,x) for
derivative df(1 - 0)/0dx;(1 — 0) and for elements of the form (0, x) for derivative
df (0 - 1)/0x;(0 — 1). Therefore, the derivatives must be computed in the specified points
to retain their meaning.

The two other cases include situations when s and j have opposite values i.e., when
the change of the value of the i variable causes the inverse (hence the name) change in the
value of the function. This type of direct Boolean derivative is known as Inverse Partial
Boolean Derivative (IPBD) and is defined as [10]:

af(1-0) B af (0 - 1)
ax;(0 > 1)  dx;(1 - 0)

= f(0;,x) A f(1,x). (2.11)

Just like with DPBDs, both derivatives are represented by the same function. The difference
is again in the domain where IPBD is only defined for vectors of the form (1; x) for
derivative df(0 — 1)/0dx;(1 - 0) and for elements of the form (0;,x) for derivative
df(1 - 0)/0x;(0 = 1). Fig. 2.1 shows a summary of the four types of direct Boolean
derivatives. We can see that each derivative is evaluated only for the elements where i"

variable has the value from which we observe its change.

f(x1, %2, x3) af (0 > 1)/0x,(0 > 1) f(xq, %2, x3) af(1 - 0)/9x,(1 - 0)
f(0,00)=0 ‘ 0 £(0,00) =0

f(0,01) =1 0 fO0D=1

f(0,1,0) =0 1 £(0,1,00=0

f(0,1,1) =1 0 fOLD=1

£(1,0,0) = 0 £(1,0,0) = 0 -@\\\ 0
fA11) =1 f(L,1LD) =1 \@—> 0
f(x1, %2, x3) f(x1,%2,%3) 0f(1-0)/0x,(0 - 1)
f(0,01)=1 £(0,01) =1 0
f(0,,0) =0 £(0,1,0) =0 0
fOL1) =1 f(0,1,1) =1 0
f(1,0,0)=0 0  f(1,00)=0

f(1,01)=1 0 f(01=1

f(1,10)=1 0 f(1,1,00=1

fA11n =1 0 f(111)=1

Fig. 2.1 Four possible types of directional Boolean derivatives of the function f(x) = x;x, V x3
depicted using flow diagrams where ~ denotes logical negation and A denotes logical conjunction

33



UNIVERSITY OF ZILINA

2.2.2.3 Directional Logic Derivative

The directional logic derivative is a generalization of the directional Boolean derivative for
the MVL function. Let f,,(x) be an MVL function. Then we define directional logic
derivative with respect to variable x; as [10]:

e il P e
where s,7,j,h € {0,1,...,m — 1},s # r and j # h. The derivative is a function of n — 1
m-valued variables, which evaluates to 1 for elements of the domain where i variable has
value s, the function evaluates to j and it holds that if the value of the variable changes from
s to r the value of the function changes to h. Notice that the derivative is a pseudo-logic
function that we have described in section 2.1.4.

Depending on the relations of the values s, and j, h we recognize two types of
directional logic derivatives. The first type is Direct Partial Logic Derivative (DPLD) for
which it holds that either s >r and j > h or s <r and j < h i.e., a specific increase
(decrease) of the value of the variable causes a specific increase (decrease) of the value of
the function. The second type is Inverse Partial Logic Derivative (IPLD) for which it holds
thateithers > randj < hors < randj > hi.e., aspecific increase (decrease) of the value
of the variable causes a specific decrease (increase) of the value of the function.

Analogously to DPBDs, the following relation holds for directional logic derivatives:

fm( > h)  0fpm(h—J)
ax;(s > 1) ox;(r—=s)

(2.13)

Although derivatives in both directions are represented by the same function the key
difference is again in the domains since the directional logic derivative is only defined for
the vectors of the form (s;, x) and (r;, x) for DPLD and IPLD respectively.
We can also use the directional logic derivative to analyze an integer function. We
define it in an almost identical way just by changing the type of the function [30]:
0 fma G = 1)
0x;(s > 1)

_ {L iffm;ml,mz,...,mn (si' x) = Jj and fm;ml,mz,...,mn (T'i, x)=nh
0, otherwise

(2.14)

)

where s,r€{0,1,..,m;},s #randj h€{0,1,..,m},j # h. Just like with MVL
functions, we recognize two types of derivatives, which are DPLD and IPLD. We can see
that the directional logic derivative (2.14) for the integer function is the most general form
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that includes directional derivatives of the MVL function and also directional Boolean
derivatives. Therefore, we will consider just this most general case in the rest of the section.

Definition (2.12) allows m? * (m — 1)? specific directional derivatives of MVL
function for all possible combinations of values of j, h,s,r and definition (2.14) allows
mx (m — 1) *m; x (im; — 1) specific directional derivatives of integer function. We can
see that even for smaller values of m the number of possible derivatives is considerable.
However, often we are not interested in the exact influence of a specific change, but we want,
for example, to know whether a certain change in the value of a variable causes any change
in the value of the function. Therefore, to obtain a better overall characteristic of the
examined function we need to use a different type of logic derivative known as integrated

directional logic derivatives.

2.2.2.4 Integrated Directional Logic Derivative

The literature recognizes three types of integrated directional logic derivatives. Each of them
contains information that is contained in several simple directional logic derivatives.
2.2.2.4.1 IDPLD of type 1

Integrated logic derivative of type | describes situations when the change of the value of the

i variable from s to r causes a change in the value of the function:

e from the value j to a value less than j,
e from a value less than j to the value j,
e from a value greater than j to the value j,

e from the value j to a value greater than j.

The above-enumerated possibilities of a change suggest that the derivative can be defined in

four configurations [30]:

. j-1 .
afm;ml,...,mn(] \) _ \/ afm;ml,...,mn(] - h)
0xi(s = 1) dx;(s > 1) (2.15)
— {11 iffm;ml,...,mn(si: x) = ] and fm;ml,...,mn(si’ x) <j
0, otherwise ’
. j-1 .
afm;ml,...,mn(/| D _ \/ afm;ml,...,mn(h - )
0xi(s = 1) dx;(s > 1) (2.16)

{1' if fm;ml,...,mn (s, x) <jand fm;ml,...,mn (sux) =j
0, otherwise ’
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. m-—1 .
afm;ml,...,mn (@ ]) _ \/ afm;ml,...,mn (h - ])
Ox: - Ix:(s -
xi(s > r) nYed xi(s > r) 2.17)
— {1' iffm;ml,...,mn (Si» .X') > j and fm;ml,...,mn (Si' X) =]
0, otherwise ’
. m—1 .
afm;ml,...,mn(] 7) _ \/ afm;ml,...,mn(] - h)
ox;(s > r) ax;(s > r
Gon VT oG -n 019
— {L iffm;ml,...,mn (Si» x) = ] and fm;ml,...,mn (Si' x) > ]
0, otherwise ’

where the symbol v denotes logical disjunction. Notice that we can use the logical
disjunction since the simple directional derivatives that we operate on are pseudo-logic
functions. Derivatives (2.15) and (2.16) are defined for s,r € {0,1,m; —1} and
j€{12,..,m— 1} and derivatives (2.17) and (2.18) are defined for s,r € {0,1,m; — 1}
and j € {0,1, ..., m — 2}. And finally, all of them should be computed only for elements of
the form (s;, x). In summary the integrated directional logic derivative of type | identifies
situations when a specific change of a value of a variable causes a change of the function

from state j to a worse (better) state or vice versa.

2.2.2.4.2 IDPLD of type 11

The integrated logic derivative of type Il describes situations when the change of the value
of the i"" variable from s to r causes an improvement of the value of the function or in the
second case a decrement of the value of the function. Therefore, we can define it in two

configurations [30]:

m-1 )
afm;ml,...,mn(\‘) _ \/ afm;ml,...,mn(] \)
0x;(s > 1) v 0x;(s » 1)
m-1Jj-1 .
_ \/ 0 frimama,.omy, U = )
LA 0xi(s =» 1) (2.19)
— 11 iffm;ml,...,mn(si’x) > fm;ml,...,mn(ri'x)
0, otherwise ’
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m-1

afm;ml,...,mn(}) _ \/ afm;ml,...,mn(/‘ D

0xi(s = 1) 0xi(s > 1)

m—-1J-1

_ \/ i) a— S ) (2.20)

0x;(s > 1)

)

j=1 h=0

= f(x) — {1' iffm,'ml,...,mn(sir x) < fmiml,...,mn(ri'x).
0, otherwise

Both versions of the derivative should be computed for elements of the form (s;, x). In
summary, the integrated directional logic derivative of type Il identifies situations when
a specific change in the value of a variable causes any improvement (decrement) of the value
of the function. Notice that we can define the derivative in terms of the derivatives of type I,
which describe the change more precisely. Also, let us notice that the derivative of type Il is

the only type that does not contain logical and in its definition.

2.2.2.4.3 IDPLD of type Il
Finally, the integrated logic derivative of type 11l describes situations when the change of

the value of the i variable from s to r causes a change in the value of the function in one of

the following ways:

e from a value greater than or equal to j to a value less than j,
e from a value less than j to a value greater than or equal to j,
e from a value greater than j to a value less than or equal to j,

e from a value less or equal to j to a value greater than j.

m-1 Jj-1

afm;ml,...,mn(hzj - h<j) _ \/ \/ afm;ml,...,mn(hu - hg)
ax;(s - r - ax;(s > r
i ) ne o i ) (2.21)
— {1' iffm;ml,...,mn(sif x) Zj and fm;ml,...,mn(ri' x) <j
0, otherwise ’
J-1 m-1
afm;ml,...,mn(h<j - hzj) _ \/ \/ afm;ml,...,mn(hd - hy,)
ox;(s>r B ox;(s—->r
i ) ha=0 hy=j i ) (2.22)
— {1' iffm;ml,...,mn(si:x) < ] and fm;ml,...,mn(ri:x) Zj
0, otherwise ’

37



UNIVERSITY OF ZILINA

-1 J
afm;ml,...,mn(h>j - hsj) _ TV \/ afm;ml,mz,...,mn(hu - hd)

0x;(s > 1) h T, dxi(s > 1) (2.23)

— {1: if fm;ml,...,mn (s;,x) > jand fm;ml,...,mn (rux) <j
0, otherwise ’

Jj m-1
afm;ml,...,mn(hsj - h>j) _ \/ afm;ml,mz,...,mn(hd - hu)

0x;(s > 1) ho Ve dxi(s > 1) (2.20)

— {1: if fm;ml,...,mn (s x) <jand fm;ml,...,mn (rux) >j
0, otherwise ’

where the notation h; denotes all system states that are less or equal to j while the meaning

is analogous for other relational operators.

2.3 Application of Logic Derivatives

The importance measures that we described in section 1.6 quantify how a change in
a component state or reliability influences the state and reliability of the entire system. The
evaluation of the IMs, therefore, involves analysis of the dynamic properties of the structure
function. Thus, the logic derivatives constitute a perfect tool for evaluation. In this section,
we describe how we can use logic derivatives to calculate IMs introduced in section 1.6.
Definition (1.34) of the Sl agrees with the relative number of situations (state vectors)
in which a failure of a component results in a failure of the system. The definition relates to
DPBD (2.10), which describes situations in which a change in the value of a variable results
in the same change in the value of the function. Therefore, we can calculate Sl in terms of

the derivative as [20]:

dp(1 - O)) (2.25)

SI; =TD <—axi(1 50)

where ¢ is the structure function and TD(.) denotes the truth density. The truth density is
defined as the relative number of elements of the domain of a Boolean-valued function for
which the function evaluates to 1. Note that the DPBD is a function of n — 1 variables, which
we need to consider in the calculation of the relative number of states. Details of the
computation of the derivative and the truth density depend on the specific representation of
the structure function. We describe the details of the computation in section 3.3.2 and
section 3.3.4.

38



DISSERTATION THESIS

One of the interpretations of the definition of Bl is that it agrees with the probability
that the failure of a component results in the failure of the system. Therefore, we can compute
Bl using the DPBD as [20], [41]:

B 0¢p(1 - 0)

Notice that the evaluation of (2.26) involves the calculation of the same DPBD as in (2.25).
The difference is in the last step where we calculate probabilities instead of the relative
number of states. Again, details of the computation of probabilities depend on the specific
representation of the structure function.

As we stated in section 1.6, there exist several generalizations of Bl for MSS. Logic
derivatives are also useful for the calculation of various generalizations of BI. For example,
we can use integrated DPLD (2.21) to compute one of the generalizations of Bl for MSS as:

> plhz) = 2.27
Blis Pr{axi(s -»s—1) <y (2.27)

where s € {1,2, ..., m; — 1}. The definition and existence of various types of integrated
DPLD imply that there exist multiple versions of Bl for MSS since the choice of the
derivative gives a slightly different meaning to the results, which allows us to pick one that
best suits our use case. Also, since the definitions of Bl and Sl are closely related, for each
version of Bl we can compute the corresponding Sl just by altering the last step of the
calculation from the calculation of probabilities to the calculation of the relative number of
states. Similarly, we can also calculate the corresponding CI for each version of the BI.

FVI differs from the IMs discussed so far since its definitions (1.40) and (1.41) are
based on MCSs. The basic approach to the calculation of FVI involves the enumeration of
all MCVs (MPVs). Logic derivatives are also a suitable tool for this task since we can use
an extension of the derivative as described in [42]. However, the enumeration of all MCVs
(MPVs) is not an efficient solution, especially for systems with alarge number of
components since the number of MCVs (MPVs) is also very large. Fortunately, a more
sophisticated approach exists [43], [44] that also utilizes the extension of the derivative and
can calculate FVI without the enumeration of MCVs (MPVs).

The definitions that we presented in this section show that the logic derivatives are
indeed a perfect tool for the importance analysis because of the relative simplicity of the

definitions and also because we can use one derivative to compute multiple IMs.
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2.4 Discrete Function Representation

One of the characteristics of complex systems is that they consist of many components.
Therefore, the structure function representing such a system may be difficult to represent.
Hence a principal task that must precede the reliability analysis itself is the choice of
a suitable representation for the function. The literature provides various representations
some of which are suitable for the representation of any discrete function while others are
specialized to represent a specific type of discrete function e.g. Boolean function. This

section introduces some of the representations that we can apply in reliability analysis.

2.4.1 Arithmetic Expression

The arithmetic expression is one of the simplest representations. We mostly encounter it in
the literature since it is easily readable to humans. The expression consists of variables and
mathematical operators. We denote variables as x; where i specifies the index of the variable.
The type of mathematical operators depends on the type of function the expression
represents. For Boolean functions, the commonly used operators are logical conjunction
denoted as A (often omitted from the expression), logical disjunction denoted as v , and
logical negation denoted as ~ over an expression. For the MVL functions and integer
functions commonly used operators are the min and max operators, which return the

minimum and maximum of their arguments respectively.

&
/

.x:z X; Xl

Fig. 2.2 Abstract Syntax Tree representing function f(x) = max(x;, min(x,, x3))

The main disadvantage of arithmetic expressions is that, although they are easily readable to
humans, they are harder to process for a computer. One of the ways to manipulate arithmetic
expressions on the computer is to represent them using an Abstract Syntax Tree (AST). AST
IS a graph structure that consists of nodes representing variables and nodes representing
mathematical operators. Fig. 2.2 shows an example of an AST. Though it is easy to evaluate
the AST and perform basic arithmetic operations, it is quite complicated to perform more

complicated calculations such as the calculation of logic derivatives.
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2.4.2 Truth Table

Another very simple discrete function representation is the truth table. The table explicitly
assigns the value of the function to each element of the domain of the function. This implies
that the size of the table is the same as the size of the domain of the function. Tab. 2.1 shows
formulae for the calculation of the size of the table for different discrete function types. For
each type, the size depends exponentially on the number of variables n. This property is
impractical even for smaller functions of roughly tens of variables. However, thanks to its
simplicity, the table is often used in examples and for testing since we can simply (but costly)
implement even more complicated calculations such as the logic derivatives.

Tab. 2.2 shows a truth table of an integer function. Besides the straightforward form
of the table as shown in Tab. 2.2, there exist techniques that make the table more compact
[9]. One of the techniques is to enumerate only elements of the domain in which the function
evaluates to a certain value assuming that the function evaluates to the same known value in
all other elements. For example, in the case of a Boolean function, we only need to
enumerate elements of the domain where the function evaluates to 1 and assume that the
function evaluates to 0 in other points. In general, for a function that has a codomain of size

m, we need to enumerate m — 1 subsets of the truth table.

Tab. 2.1 Size of the domains of different function types where n is the number of variables, m is the
number of values of the MVL function and m; is size of the domain of i"" variable of the integer

function
Function type Size of the domain
Boolean 2"
Multiple-Valued Logic m'"
Integer my *my * .. xm,

Tab. 2.2 Truth table of the integer function f(x) = max(min(x,, x3), x;) where x;, x, € {0,1}
and x5 € {0,1,2}

X1 X3 X3 f X1 X2 X3 f

o|lo|lo|lo|o|o
R |lRr |, |lolo|o
N, |lOo|NM|R|O
N R |lo|lN|R | o
N = IS S [y SN N
Rl |, |lo|lo]|o
N R |lo|lN RO
Nk, |, |[NM|R,|O
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2.4.3 Truth Vector

A truth table like the one shown in Tab. 2.2 has a regular structure. We can use this property
to make the table more efficient by storing only the last column of the table. We call the
column a truth vector. An important property of the vector is that we can access its elements
using an index [. Therefore, we need to map the elements of the domain of the function to

the index L. For an integer function the index can be calculated as follows:

n

[ = z 0;x; where

=1 (2.28)
o, =1

0j =M;;10;4, fori=1,2,...,n—1.
The auxiliary vector o; is called an information vector. It is beneficial to calculate the
information vector only once before any further calculations. Furthermore, in the case of the
MVL function and Boolean function, the calculation of the information vector simplifies

since the formula (2.28) simplifies to (2.29) and (2.30) respectively.

2.

i

n
mn—ixi’
=1
n
- Z =iy, (2.30)
i=1

1 (2.29)
1
The size of the vector is equal to the number of elements of the domain of the function.
Fortunately, we can utilize the way computers store numbers to make vectors more compact.
The smallest addressable unit of memory is a byte that can encode 256 unique values.
However, the sizes of domains of integer variables are usually much smaller, and in the case
of Boolean variables it is just two values i.e., we can encode it using a single bit. Therefore,
we can store the truth vector more efficiently if we encode multiple elements of the domain
using a single byte. Let p be the maximum of the sizes of domains of variables of an integer
function and let n be the number of variables. Then one byte can store r = |log, p] elements
of the domain and therefore the size of the truth vector is reduced by the factor of r. Though
this optimization is useful, especially for Boolean functions, it does not help with the
eventual exponential complexity. For example, the memory requirements of a truth vector
representing a Boolean function of 40 variables using the described optimization are

128 GiB of memory. The truth vector becomes large even for dozens of variables.

Nonetheless, the truth vector is useful for testing as a representation of the truth table.
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2.4.4 Decision Tree

An important property of the truth table is that we can look up the value of the function
corresponding to a given element of the domain. The truth vector allows the lookup using
a simple computation. Another useful technique is to use a so-called Decision Tree (DT).
The decision tree is a specific type of graph that satisfies the tree invariants [45]. A special
kind of DT is a Binary Decision Tree (BDT) that represents a Boolean function. We can use
the decision tree to look up the value of a function using a series of decisions.

A decision tree (Fig. 2.3) consists of two types of nodes. The first type is internal
nodes that represent variables and the second type is terminal nodes that represent values
from the domain of the function. Each internal node is associated with one variable x; and
has a tuple of m; outgoing edges. The k™ edge in the tuple represents a situation in which
the variable x; has the value k. To look up a value of the function we start at the root of the
tree. In each internal node, we choose an edge depending on the value of the variable. Using
the edge, we move to the next node. We repeat this process until we reach a terminal node.
In Fig. 2.3 the bold edges represent the path in the tree for values of variables x; = 1,x, =
0, x; = 2, which we can shortly denote using the vector notation (1,0,2).

The decision tree is that it is ordered — each level of the decision tree either contains
internal nodes associated with the same variable or contains only terminal nodes (last level).
It follows that the size of the tree is exponential in the number of variables n and therefore
the tree is impractical for the representation of bigger functions — just like the truth table.

The graph approach is a basis for a more sophisticated data structure — the decision diagram.

[\S] 4]\3—'

/
y
0 1 2 0 1 2 1 1 2

Fig. 2.3 Decision tree representing the integer function defined in Tab. 2.2
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2.4.5 Decision Diagram

The decision diagram builds on the idea of the decision tree — to represent a discrete function
using a graph structure. It enhances the graph structure (which no longer is a tree) to allow
for a more compact representation of a discrete function. Like the decision tree, a decision
diagram consists of internal and terminal nodes serving the same purpose as in the decision
tree. The nodes may or may not be ordered depending on a specific type of decision diagram.
Fig. 2.4 shows an example of a decision diagram representing the same function as DT in
Fig. 2.3.

Fig. 2.4 Decision diagram representing the same function as DT in Fig. 2.3

Decision diagrams are the central topic of this thesis, thus, the rest of the chapters provide
an in-depth description of the fundamental properties of decision diagrams and their

application in reliability analysis.
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3 Decision Diagrams

A decision diagram is a graph structure that can efficiently represent discrete functions.
Researchers have proposed various types of decision diagrams over time. Some of the
diagrams are intended for general discrete function manipulation whilst others aim to solve
a specific problem. This chapter introduces several types of decision diagrams along with
their key properties and algorithms for their creation and manipulation. Finally, the chapter
describes the application of decision diagrams in reliability analysis as well as diagram

algorithms specific to reliability analysis.

3.1 Reduced Ordered Decision Diagrams

The Binary Decision Diagram (BDD) proposed by Lee [46] and further developed by
Akers [47] and Bryant [11] as Reduced Ordered Binary Decision Diagram (ROBDD) is,
historically, the first decision diagram. The literature often refers to ROBDD as just a Binary
Decision Diagram (BDD) since this version is the most widely used. In this thesis, we will
also use the term BDD instead of ROBDD for brevity. BDD is a graph structure designed
for the representation of Boolean functions However, theoretical principles and techniques
used in its definition are the basis for most of the other diagrams described in this chapter.

As we described in Section 2.1 the Boolean function (2.2) is a special type of discrete
function (2.1). Therefore, it is natural that techniques and approaches utilized in its
representation in the form of the BDD were considered and used in the development of
similar techniques for the representation of other types of discrete functions — namely the
MVL function (2.3) and integer function (2.4). The authors proposed the Reduced Ordered
Multi-valued Decision Diagram (ROMDD) [12] as a generalization of the (RO)BDD to
represent these functions. Like (RO)BDD, the literature often refers to ROMDD shortly as
MDD. We will also use this notation in this thesis.

Though historically, decision diagrams have been developed from simpler BDD to
more general MDD and others, we will proceed with the description of MDD in its most
general form which represents an integer function. This approach is more concise since BDD
and MDD representing MVL function are only a special case and, hence, do not require
separate descriptions. In Fig. 3.1 we can see all three diagram types mentioned — BDD as
the simplest type and two versions of MDD, the first one representing an MVL function and

the second one representing an integer function.
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Fig. 3.1 Left: BDD representing Boolean function, middle: MDD representing MVL function,
right: MDD representing integer function

3.1.1 Graph Structure

MDD is a graph structure that consists of terminal nodes that represent values of the function
and internal nodes that represent variables. A terminal node is identified by the value it
represents. Let us denote nodes using capital letters 4, B, ... . Then, we denote the value of
aterminal node A as VALUE(A). Also, we use the notation T, to denote a terminal node
representing value a. In Fig. 3.1 and all other figures, we denote terminal nodes using
a square shape with a number representing the value. An internal node is associated with
a variable x; and a tuple of m; edges leading to other nodes — sons* of the node. The edges
represent possible values of the variable — k™ edge represents value k for k = 0,1, ..., m; —
1. Let B be an internal node. Then, we denote the index i of the variable it is associated with
as INDEX(B) or shortly as iz and its k™ son as SoN(B, k) or shortly as B.

One of the principal operations that we can perform on MDD is to evaluate it for
some specific input vector x = (x4, x5, ..., X, ). During the evaluation, we repeat a decision
in each internal node (starting at the root node) such that we choose an edge according to the
value of x;. The edge leads to another node, which is either an internal node — in which case
we repeat the process, or it is aterminal node that contains the value of the function
corresponding to x. An alternating sequence of internal nodes and edges that lead to

a terminal node is known as a path [48].

1 The term son or direct successor is typically used with tree structures. However, it is short,
descriptive and conveys the intended information very well also in the case of decision diagrams.
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Fig. 3.2 MDD containing redundant node (dashed gray outline) and two duplicate nodes (thick
black outline)

Nodes of an MDD are ordered on levels. The last level contains terminal nodes. Other levels
contain internal nodes and all internal nodes on the same level are associated with the same
variable. We denote the level of node A as LEVEL(A). The first level contains a single node
— the root node — denoted as root. Consequently, using this notation, we may write the
following relations LEVEL(root) = 1 and LEVEL(T,) =n+ 1 fora ={0,1,...,m — 1}.
Edges in MDD can only lead to nodes on lower levels. This rule ensures that nodes
are in the same order on each path from the root node to a terminal node. This property is
captured in the Reduced Ordered MDD part of the full name. Consequently, the order of
variables is one of the properties that we can describe for each ordered MDD. In Fig. 3.1
(and in most of the other figures depicting diagrams) we use the so-called implicit order,
which orders variables by their indices i.e., x; on the first level, x, on the second level all
the way to the x,, on the second to last level i.e., it holds that INDEX(A) = LEVEL(A).
Another important property of MDD is that it does not contain any redundant nodes
and no duplicate nodes. The two properties ensure that each node in the diagram is unique.
A redundant node is a node with all edges leading to the same node. Decisions in such a node
will always result in the selection of the same son (e.g. during the evaluation). Therefore,
there is no need to keep such a node in the diagram. In Fig. 3.2 we can see an example of
a redundant node (representing variable x,) marked with a dashed gray outline. Two nodes
are duplicates if they are roots of two isomorphic subgraphs. Therefore, only one node from
the group of duplicate nodes is always retained. This property is captured in the Reduced
Ordered MDD part of the full name. More examples of redundant and duplicate nodes can

be found in section 3.2.2.

47



UNIVERSITY OF ZILINA

3.1.2 Mathematical Foundations

The mathematical foundation of decision diagrams lies in arecursive application of
Shannon’s expansion [49] (for BDD) and generalized Shannon’s expansion [9] (for MDD).
The definition of Shannon’s expansion uses the cofactor of a discrete function (2.6). The

Shannon’s expansion with respect to variable x; is defined in terms of the cofactor as:

f(x) = xif(liﬁx) \% Ef(oi'x)! (31)
for the Boolean function and the generalized version for an integer function is defined as:
m;—1

Fo) = ) (b o k)= f (ke 0)), (32)
k=0

where i€{12,..,n}L,ke{0,1,..,m;—1} and < represents the logical
biconditional (1.10). The expansion (3.1) splits the function into two cofactors of the
function — f(1;,x) and f£(0;, x). The disjunction of two conjunctions selects exactly one of
the cofactors based on the value of the variable x;. The selection or more suitably —
the decision, is neatly represented by an internal node, which can be considered a graph
representation of Shannon’s expansion with respect to variable x;. The generalized
Shannon’s expansion (3.2) follows the same rationale by selecting exactly one of the m;
cofactors of the function with respect to variable x;. The decision is achieved by the logical
biconditional {x; < k} evaluating to 1 for exactly one value of k and to 0 for all other values.
The multiplication then selects only one of the cofactors. Fig. 3.3 illustrates the relationship
between the expansions (3.1) and (3.2) and an internal node of a decision diagram.

Fig. 3.3 shows that each node except the root node on a certain level of the diagram
represents a cofactor of some function from the above levels. The expansion (3.2) effectively
splits the domain of the function into m; parts of the form (a;,x) fora =0,1,...,m; — 1. In
each part, the value of the variable x; is known and the number of variables is reduced by
one. Therefore, the cofactors (son nodes) are either constant functions (terminal nodes) or
they are internal nodes representing another recursive expansion. The recursion is
guaranteed to terminate after at most n expansions since values of all variables are
necessarily known at that point. This sets the upper bound on the number of levels of
a reduced ordered decision diagram, which is n. However, the cofactor can turn to a constant
function sooner when it evaluates to the same value for all elements of its domain. This
agrees with the situation when an edge in a diagram skips some levels and goes directly to

a terminal node.
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Fig. 3.3 Internal node of a BDD (left) and MDD (right) that represents Shannon’s expansion with
respect to i" variable

=0 (= - X

Lastly, Fig. 3.3 shows an important property of the decision diagrams that not only the root,
but each node represents a discrete function (even aterminal node, which represents
a constant function). Therefore, when suitable, we can use the term function and node

interchangeably.

3.1.3 Canonical Representation

The reduced and ordered properties of MDD ensured that MDD is a canonical
representation of a discrete function. This was proven by Bryant [11] for BDD and later by
the authors in [12] for MDD. Canonical representation ensures that each function has
a unique representation. An example of a representation that is not canonical is an arbitrary
expression. For instance, Boolean functions f; and f, defined by expressions f; (x) = x;x, V
Xx3 and f(x) = Xyxx3 V X1X,X3 V X1 X,x5 represent the same function even though they
contain different numbers of terms and different operators. In general, to check whether two
non-canonical representations of discrete functions represent the same function, we
transform each representation into some other — canonical — representation and compare
them for equality.

In the case of MDDs, we need to define the equality of two nodes to be able to
compare two diagrams. The first condition for nodes A and B to be equal is that they must
both be either terminal nodes or internal nodes. If they are terminal, they are equal if and
only if VALUE(A) = VALUE(B). If they are internal, they are equal if and only if INDEX(A) =
INDEX(B) and Ay = By for k = 0,1, ...,m;, — 1. Notice the recursive nature of equality
comparison, which shows that each node can be considered as a root of (sub)diagram on its
own i.e., each node (not only the root node but even terminal nodes) represents a unique
function. Implementation of the comparison using the definition would be relatively
complicated since it would require simultaneous traversal of both diagrams. Hence, in

section 3.2.1 we describe an efficient approach that is used in practice.
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Another typical example of a canonical representation is the truth table which. As we
described in section 2.4.2 and section 2.4.3, the truth table is quite inefficient for the
representation of larger functions. However, it is useful for testing and verification because
of its simplicity. Lastly, let us note that even though expressions, in general, are not canonical
representations, some expressions with certain restrictions such as Disjunctive Normal

Form [8] are canonical representations.

3.1.4 Number of Internal Nodes

One of the key properties of each discrete function representation is its size, specifically, the
relation of the size to the number of variables n. The reason is the practical limitation posed
by the limited amount of memory and complexity of the algorithms that work with the
representation, which usually depends on the size. When we described other discrete
function representations such as the truth table or the decision tree, we also provided
a formula to calculate the size of the representation for a given number of variables n (see
Tab. 2.1, and section 2.4.4). Unfortunately, it is not possible to do the same calculation for
decision diagrams in general. Nevertheless, we can calculate the worst possible size of
a diagram. Consider MDD representing m-valued logic function of n variables. Then we can
calculate the upper bound on the number of nodes as [50]:

' mn—h_1 b 33
min ﬁ+m -m), (3.3)

where 0 < h < n. To get a better insight into the reasoning behind the expression we need
to follow constraints of the structure of a decision diagram [51]. There is only one node on
the first level of the diagram. At the second level, there can be at most m nodes (sons of the
root node). For the next levels, the number of possible unique nodes grows exponentially
following the branching of a decision tree. However, at the same time, there can be at most
m terminal nodes at the last level of the diagram. Since each node in the diagram is unique
and edges can only lead to nodes at lower levels the number of nodes at the second to last
level (last internal level) is also limited. We can see that the size of the diagram grows
exponentially from the top and combinatorically from the bottom. The increasing sequences
“meet” at some internal level given by h, which minimizes the expression (3.3). Therefore,
the first term of the addition accounts for the exponential growth of the diagram from top to
bottom, and the second term accounts for the combinatorial growth from the bottom of the

diagram.

50



DISSERTATION THESIS

Tab. 3.1 Number of nodes in BDDs representing specific (symmetric) functions

Function Number of internal nodes
Logical conjunction/disjunction n
Odd parity function 2n—1
Structure function of a k-out-of-n system k(n—k+1)

The exponential upper bound on the number of nodes does not seem to improve the
exponential complexity of the decision tree and the truth table. However, for many functions
that we encounter in practice, the size of the diagram is much more favorable. A typical
example is the representation of symmetric functions that we briefly describe in
section 3.1.5. In Tab. 3.1 we can see formulas to calculate the number of internal nodes in
BDDs representing such functions (the number of terminal nodes is always two, except in
the special case of aconstant function). Notice that the numbers are much better than
exponential. Also, the size of the diagram is closely tied to the order of variables, which we
discuss in section 3.1.5.

3.1.5 Order of Variables

The order of variables in a decision diagram is one of the properties required for it to be
a canonical representation. A well-known consequence of this property is that it might
influence the size — the number of nodes — of the diagram [11]. We can classify diagrams
into two groups. The first group contains diagrams whose size does not depend on the order
of variables and, naturally, the second — larger group — contains diagrams whose size
depends on the order of variables.

Diagrams in the first group represent symmetric functions — functions that evaluate
to the same value regardless of the order of their arguments. Diagrams representing such
functions have a regular structure that does not change for different orders of variables.
Typical examples of such functions are the Boolean parity function, logical conjunction of
n variables, logical disjunction of n variables, min function, max function, etc. Fig. 3.4
shows BDDs representing the Boolean parity function of three variables. BDDs in the figure

have different orders of variables and they have the same regular ladder-like structure.
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Fig. 3.4 BDDs with three different orders of variables representing parity function

The second group of diagrams is more important since we encounter them more often and
therefore are important to consider in the design of software tools for the creation and
manipulation of decision diagrams. The order of variables can be a factor that decides
whether we can construct a diagram within reasonable time and memory constraints. For
example, Fig. 3.5 shows BDDs representing Boolean function f(x) = xyx, V x3x, V X5X4
with two different orders of variables. Notice that even for such a simple function the number
of nodes grows significantly. Therefore, it is vital to use a suitable order of variables.
Unfortunately, finding an optimal order is an NP-complete problem [52]. Hence, in practice,
we are reliant on the use of a variety of heuristic approaches.

The literature describes two principal types of heuristics for the choice of the order
of variables [53], [54], [55]. The first type is static heuristics. Their key property is that they
choose the order of variables before the creation of any diagrams. Then, during and after the
creation the order stays the same. The advantage of the static approach is that it can exploit
the properties of the specific problem and therefore find a better order for that specific
problem. On the other hand, it might not be possible to use the approach for generic diagram
manipulation tools.

The main idea behind the heuristics of the second type is to gradually re-order
variables as the diagrams are created, hence, those heuristics are called dynamic heuristics.
Since they are opposite to the static ones their advantage is that they do not need any
knowledge about the function(s) the diagram(s) represent. This allows them to be used in
generic decision diagram manipulation tools. Presumably, the most well-known dynamic

heuristic is variable sifting [55] originally proposed for BDDs.
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Fig. 3.5 BDDs representing the same function using a different order of variables

A vital operation for each dynamic heuristic is a swap of indices between two adjacent levels
in a diagram so it can gradually adjust the order of variables using a series of swaps. The
swap operation needs to maintain all invariants of the diagram — mainly that each node
represents a unique function, and the function the node represents does not change during
the lifetime of the node. The implementation of the swap operation is based on the
observation that to swap nodes that represent variable x;, with nodes that represent variable
x;, on the next level, we only need to examine nodes at two levels and modify nodes
representing variable x; [56], [57].

To swap a node we modify it by changing its index from i; to i, and set its sons to
new nodes with index i; and sons that were grandsons of the original node in such a way,
that the function is preserved at the node. Fig. 3.6 shows the swap operation for a specific
example. Bold darker edges show part of a path in the diagram. The important thing to notice
is that the path (and all other paths) leads to the same grandson after the swap. After the

swap, the old sons of the node can be freed (if they are not shared by some other nodes in
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the diagram), also the newly created nodes might be redundant, so they are not created. This
is the point where a series of swaps can result in a new diagram that contains fewer nodes.

An interesting observation is that the swap operation practically mutates the state of
the node by changing pointers to its sons and its index, however, logically the node
represents the same function and therefore it does not violate the immutability invariant.

The variable sifting heuristic described in [55] uses a series of swaps to find a better
order of variables. It places each variable on a level where the total number of nodes in the
diagram is the smallest. It does so by first trying to place a variable (by swapping all nodes
associated with a given variable) on each level of the diagram and subsequently restoring
the best-observed case. The order in which variables are placed is given by the total number
of nodes initially associated with the given variable starting with the variable with the highest
number of nodes.

Although heuristics can help a lot in the practice there exist some functions for which
the number of nodes in the diagram will depend exponentially on the number of variables
regardless of the order of variables. We call such functions inherently complex
functions [11]. An example of an inherently complex function is a Boolean function

describing an integer multiplier [11].

[
(8]

Fig. 3.6 Node of an MDD before (top) and after (bottom) the swap
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3.1.6 BDD Extensions and Alternatives

Since its introduction, BDD has proven to be a fundamental tool for solving problems in
areas such as logic synthesis [58] or formal verification [59]. The reason for its popularity
among researchers is that it can represent Boolean functions efficiently and is supported by
various software libraries (see section 3.2).

Naturally, a general tool — despite being reasonably efficient — cannot exploit the
specifics of a given problem. Therefore, the researchers have proposed various modified
versions of the BDD structure that are designed to solve a narrower set of problems. BDD
with complemented edges [60], [61] simplifies the representation of complemented Boolean
functions. Zero-suppressed Decision Diagram (ZDD) [62] improves diagram sizes for
Boolean functions representing sets (especially sparse sets). Algebraic Decision Diagram
(ADD) [63] allows more terminal nodes than just two nodes representing values 0 and 1.
And Edge-Valued Binary Decision Diagram (EVBDD) [64] also allows more terminal nodes
than just two nodes representing values 0 and 1.

In addition to the above-named BDD extensions, researchers have proposed several
other modifications — using various forms of binary encoding of multi-state variables and
functions — such as logarithmic BDDs (LBDD) [65], Multi-State BDDs (MBDD) [66], or
Multi-Rooted Binary Decision Diagrams [67]. Finally, in Fig. 3.7, we can see examples of
selected BDD extensions.

Fig. 3.7 BDD with complemented edges representing the function f; (x) = x; vV x; (left); ADD
representing function f,(x) = max(15x,, 10x,) (middle); EVBDD representing function f3(x) =
3x; + 2x, — 9x5 (right)
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3.2 Decision Diagram Implementation

Researchers have developed several software libraries implementing decision diagrams in
different programming languages. The libraries are often referred to as decision diagram
packages. The most well-known are the BuDDy [68] and CUDD [69] written in C language
with an interface for C++ and the more recent Sylvan [70] parallel BDD package written in
C language. Several programming languages offer libraries that serve as interfaces to call
these libraries such as CUDD for Haskell [71] or dd for Python [72]. Furthermore, several
implementations in other programming languages exist, such as the JDD [73] library for Java
and the DecisionDiagrams library [74] for C#. Tab. 3.2 contains an overview of the libraries.

As we can see in the table, most implementations support only BDDs and some of
their alternatives. We aim to examine and develop techniques for the analysis of MSS using
MDDs — the examination requires a performant software library supporting MDDs. Since
none of the state-of-the-art C libraries support MDDs, we implemented our open-source
decision diagram library called TeDDy — Templated Decision Diagram library [75], [76] in
the C++ language. The goal of the library is to provide general tools for the creation and
manipulation of BDDs and MDDs with a module dedicated to reliability analysis that utilizes

decision diagrams.

Tab. 3.2 Overview of selected decision diagram packages

Package Language Supported diagrams

BuDDy C, C++ BDD

CuDD C,C++ ADD, BDD, ZzDD

Sylvan C, C++ ADD, BDD, ZDD

CUDD (Haskell) Haskell ADD, BDD, ZzDD

dd Python BDD, MDD

JDD Java BDD, ZDD
DecisionDiagrams C# BDD

As the name suggests, the library uses the powerful template mechanism of the C++
language to implement core functionalities universally using object-oriented programming
while maintaining runtime performance comparable to state-of-the-art C libraries.

Implementation of the library uses the following layers:

e node representation,
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e node management,
e diagram management,

e and user-facing interface.

The four-level design of the library can be seen in Fig. 3.8. It allows higher levels to reuse
the core low-level parts of the library — e.g. the management of nodes.

Section 3.1 covers the theoretical aspects of reduced ordered decision diagrams —
describing their characteristic properties and mathematical foundation. However, a diagram
implementation that would just blindly follow the above definitions would not be effective.
Therefore, in the rest of this section, we focus on important aspects of the implementation
of software tools for the creation and manipulation of decision diagrams — focusing on the
implementation of MDDs representing integer functions. A complete implementation of

a decision diagram package needs to address the following problems:

e representation of graph nodes;

management of graph nodes — node sharing;

e diagram creation — static, dynamic, and direct approaches;

e diagram transformations;

e examination of diagram properties — efficient diagram traversals and

memoization techniques.

Our software library TeDDy implements all the above-mentioned techniques with a focus
on performance and extensibility to allow the implementation of reliability analysis
algorithms on top of the decision diagrams.

In the following chapters and sections of this thesis, we utilize pseudocodes to better
illustrate algorithms and their properties. Some of the pseudocodes describe existing
algorithms while others describe new algorithms, which are contributions of this thesis.
Therefore, to differentiate between the two cases, the existing algorithms are enclosed in
appendix A, while novel algorithms are presented directly in the main sections. Finally,
considering the implementation aspects, the pseudocodes assume, for simplicity, that the
diagrams use the default order of variables i.e., that for an internal node A it holds that
INDEX(A) = LEVEL(A).
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Fig. 3.8 UML class diagram showing the most important classes on four layers of the TeDDy
library

3.2.1 Node Sharing

The sharing of isomorphic subgraphs within asingle diagram is one of its essential
properties. It greatly contributes to the efficiency of the structure and is also one of the
reasons that the diagram is a canonical representation of a function.

Each node in the diagram is unique and thus represents a unique function. The
function represented by a node does not change during the lifetime of the node. The diagram
as a data structure can therefore be regarded as a persistent data structure. However, let us
recall that the actual bytes representing a node may change e.g., during a swap of variables
(section 3.1.5) but the logical meaning of the node (the function it represents) stays the same.

This invariant property allows for more optimizations that we describe further in this section.
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Tote T

Fig. 3.9 Three MDDs represent integer functions each containing node representing the same
function

Further improvement of the diagram structure lies in the development of the idea of node
sharing beyond a single diagram. The reason for this is that a node representing a certain
function usually appears in multiple diagrams created separately and thanks to immutability
we are certain that it will always represent the same function. For example, in Fig. 3.9 we
can see that the node marked with the bold outline, representing function f(x) = x3, is part
of all three diagrams. Since this is true for other nodes as well, the potential for improvement
of the diagram structure is considerable. Instead of maintaining each node unique within
a single diagram, we manage a graph in which unique nodes are shared across multiple
diagrams. Such a graph has multiple roots (nodes that do not have any incoming edges),
therefore, it is sometimes referred to as a multi-rooted directed acyclic graph in the literature.
Diagrams represented using this technique are called Shared Decision Diagrams — first
proposed for BDDs [77] and later generalized for MDDs [78]. Fig. 3.10 shows the same
diagrams as Fig. 3.9 but represented as shared diagrams — using a single graph. Notice that

the above-mentioned node representing function f(x) = x5 is present only once.
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Fig. 3.10 Decision diagrams from Fig. 3.9 are represented with a single multi-rooted graph
To maintain the uniqueness of internal nodes, we use a lookup table called unique table. The
key for this table is a pair (i, (AO,Al, ...,Ami)) and the value stored in the table is a pointer

to the node A. For the terminal nodes, we use a similar table in which the key is the value
represented by the terminal node. Such tables are an essential component of every decision
diagram library. It is crucial to avoid the direct creation of new nodes. Instead, it is necessary
to use dedicated factory functions that work with the unique tables. In the following
description, we will refer to the functions as CREATETERMINALNODE (Alg. A.1) and
CREATEINTERNALNODE (Alg. A.2). If we exclusively use the functions to obtain new nodes,
it cannot happen that two isomorphic subgraphs exist in the graph. Let us notice that this
approach is an implementation of the Flyweight design pattern [79].

Section 3.1.3 described MDD as a canonical representation. Such property is closely
tied with a comparison for equality. Comparison following the definition described in
section 3.1.3 involves traversing both diagrams simultaneously and comparing their
structure in the process. Computational complexity of such a process is 0(8) where s is the
number of nodes in the smaller diagram — in the worst case, we traverse the entire smaller
diagram and find out that diagrams are equal/not equal in the last traversed node.
A representation that requires such exhaustive comparison is known as a weak canonical
form [61]. If nodes are not shared between different diagrams, then diagrams representing
the same function may lie in a different location in the memory. Therefore, we need to
exhaustively compare their structure to check whether they are the same. However, in
a graph of shared diagrams that only contains unique nodes, it is sufficient to compare only
the pointers (identities) of the root nodes since the same functions are necessarily represented

by the same node. Such a representation is known as a strong canonical form [61].
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3.2.2 Diagram Creation

The unique table and factory functions provide the foundation for the creation of arbitrary
MDD. MDDs can be created using different approaches. In this section, we describe the
main rationale behind each approach, its advantages, and disadvantages. Finally, we show

how some of the approaches can be combined and thus made more efficient.

3.2.2.1 Static Creation

Decision Tree (DT) that we described in section 2.4.4 is a graph structure made of the same
type of nodes as MDD. However, unlike MDD, DT has a simple regular structure, which is
easy to create. Therefore, the static approach starts with the creation of DT representing the
desired function and then transforms it into MDD. To transform DT into MDD we apply the
following steps on all levels of the DT in a bottom-up manner to eliminate redundant and

duplicate nodes:

1. Remove all redundant nodes on the current level. Each edge incoming into
a redundant node will now point to its single son.
2. Create a list of nodes for each group of duplicate nodes on the current level.
a. Select and extract an arbitrary node from each list — these are the new
unique nodes that will stay in the diagram.
b. Each incoming edge into one of the nodes in any of the lists will now
point to the node selected from the list.
3. Ifall levels have been processed, end, otherwise go to step 1.

The resulting MDD is ordered — it inherits the ordered property from the DT — and is also
reduced, which is guaranteed by step 2. Fig. 3.11 shows an example of the transformation of
a DT representing an integer function into MDD. Bold-outlined nodes mark a list of
duplicate nodes and grayed nodes mark redundant nodes. Note that duplicate terminal nodes

are kept for better readability.
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Fig. 3.11 Transformation of a DT into MDD by the gradual elimination of redundant and duplicate
nodes (redundant terminal nodes are removed in the last step for better readability)

The above-described transformation follows Bryant’s description of the reduce
algorithm [11] for BDDs. Unfortunately, the static approach is inefficient because of the size
of the initial DT — which is exponential in the number of variables. The process is also
inefficient due to the considerable number of nodes it initially creates only to be
subsequently removed. There exists a slightly better algorithm for static creation called from-
vector [80]. The input of the algorithm is a truth vector (section 2.4.3) — practically the last
level of the DT. The algorithm works in a similar bottom-up manner, but it avoids the
creation of redundant and duplicate nodes. We provide a pseudocode of the from-vector
algorithm in Alg. A.3.

The static creation is not practical for larger functions due to its exponential
complexity. However, it may be useful for the creation of smaller functions that are easier
to describe using a truth table (truth vector). Such a function can be further processed using

the dynamic approach that we describe later in this section.
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3.2.2.2 Direct Creation

Diagrams representing certain types of functions have a regular structure that we can utilize
in the creation process. We call this function-specific approach the direct approach. The
advantage of this approach is that it can create the diagram much faster than the general
approaches. We have already encountered the direct approach in the creation of a terminal
node (Alg. A.1) — representing a constant function — and the creation of an internal node

(Alg. A.2). Fig. 3.12 shows an example of diagrams that can be easily created directly.

RPN

2 0 1

Fig. 3.12 Simple decision diagrams representing a constant function (left) and an integer function
of a single variable (right)

3.2.2.3 Direct Creation of BDDs

3.2.2.3.1 Logical Conjunction and Disjunction

A very simple diagram type that we can create directly is BDD representing the function of
logical conjunction (f) or logical disjunction (g) of n variables defined as:

fX) =21 Axy A A Xy (3.4)

gx) =x, Vi, V..V x,. (3.5)
Fig. 3.13 shows BDDs representing functions f and g respectively. Function (3.4) evaluates
to 1 if and only if all variables have a value of 1 and to 0 otherwise. Similarly, function (3.5)
evaluates to 1 if and only if at least one of the variables has a value of 1 and to 0 otherwise.
This also follows from the fact that 0 is the absorbing element for the logical conjunction
operation and 1 is the absorbing element for the logical disjunction operation. As the figure
shows, BDDs elegantly capture this property. In each internal node, there is a possibility to
go straight to a terminal node if the variable associated with a given node has a value equal
to the absorbing element. We can also see that both BDDs have the same structure, the only
difference is labels on the edges and values in the terminal nodes. Also, note, that variables
in the conjunction and disjunction can be negated. In such a case the only modification is

that we swap outgoing edges of the nodes.
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Fig. 3.13 BDDs representing logical conjunction (left) and logical disjunction (right) of n Boolean
variables

Functions (3.4) and (3.5) agree with the definitions of series and parallel systems. Therefore,
we can utilize the direct approach in the reliability analysis of such systems [81]. However,
the more interesting use case is the representation of series-parallel systems. The creation of
a decision diagram representing a series-parallel system is an exemplary case where we can
utilize both the dynamic and the direct approach. During the creation, we dynamically merge
directly created diagrams representing series and parallel parts of the system.

Disjunctive Normal Form (DNF) also known as Sum of Products (SoP) is
a commonly used expression representation of the Boolean function [8]. In general, it

consists of logical conjunctions joined by logical disjunctions. The following expression:
f(xX) = x,X3%3 V x5X5 V X1 X, X3, (3.6)

shows an example of DNF. To create a BDD for a function defined in the form of DNF we

again can utilize both approaches by first directly creating a BDD for each product and

subsequently dynamically merging them.

3.2.2.3.2 Parity Function

Another Boolean function that has regular representation in the form of BDD is a parity
function of n variables [11]. The function is defined using the logical exclusive disjunction

operation (XOR) in the following way:
fX)=x D x; D ... D xp. (3.7)
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It evaluates to 1 if and only if an odd number of variables has a value of 1 and to 0 otherwise.
Fig. 3.14 shows BDD representing the odd parity function of 3 variables. Except for the
variable at the root, each variable has exactly two nodes associated with it. As Bryant
notes [11], the diagram has a ladder-like structure. In the figure, we can see that internal
levels are identical for all variables (except the root one). Therefore, to create the diagram

directly we add as many internal levels as necessary.

3.2.2.3.3 Structure k-out-of-n

A system with k-out-of-n structure is a specific system type that we have described in
section 1.3.3. Structure function of such a system evaluates to 1 if and only if at least k
variables have value of 1. BDD representing the structure function has a regular structure
and, therefore, can be created directly, though, its structure is a bit more complicated.
Parameters k and n influence the structure of the diagram. At the first n — k + 1 levels of
the diagram there exists a path starting at the first node on the left of the level that continues
via 1-labeled edges of nodes in the path through the next k — 1 levels ending in terminal
node representing the value 1. Fig. 3.14 shows BDD representing 3-out-of-5 BSS (note that
duplicate terminal nodes are kept for better readability). In the figure, we can see that on the
left of the first 3 (in general n — k + 1) levels a path starts that is terminated at the terminal

node representing the value 1 containing 3 (k in general) 1-labeled edges.

Fig. 3.14 BDD representing odd parity function of 3 variables (left) and BDD representing
structure function of 3-out-of-5 BSS (right)
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K-out-of-n system is a special case of a more general k-to-[-out-of-n system. Such a system
is operation if at least k but no more than [ components are operational. Let us not that such
a system is an example of a noncoherent system (section 1.2.1). We can also directly create
a BDD representing such a system [81], which has a similar just a bit more complicated

structure.

3.2.2.3.4 Symmetric Functions

All the above-mentioned functions have a common property — they are symmetric functions.
Therefore, it is no coincidence the BDDs representing the functions have a regular structure.
In fact, it is a property of a reduced ordered diagram that when it represents a symmetric
function of n variable it has some type of aregular structure that has at most O(n?)
nodes [11].

3.2.2.4 Direct Creation of MDDs

3.2.2.4.1 Min and Max Functions

Just like with the functions of logical conjunction (3.4) and logical disjunction (3.5), we can

also create MDDs representing their generalization — the min (f) and max (g) functions:
f(x) = min(xq, x5, ..., X5), (3.8)

g(x) = max(xq, Xy, ..., Xn)- (3.9)
In Fig. 3.15, we can see MDDs representing integer functions (3.10) and (3.9), in the case
when m = 3. Even though the structure looks a bit more complicated than the BDD
counterparts, it is regular and can be created directly. Each internal level except the first level
contains exactly m — 1 internal nodes. At each level the edges representing the absorbing
value of the operation lead directly to the terminal node and the rest of the edges lead to the

nodes on the next level. In general, there are n * m — 1 internal nodes in the diagram.
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Fig. 3.15 BDDs representing the min function (left) and the max function (right) of n integer
variables

3.2.2.4.2 Structure k-out-of-n

Construction of MDDs representing various types of multi-state k-out-of-n systems follows
the same ideas as the simpler case of the BSS (section 3.2.2.3.3). However, their structure is
more complicated — it consists of layers of structures like the structure depicted in
Fig. 3.14 [82] i.e., the regular structure of the diagram can be seen in a three-dimensional
layout. Furthermore, there also exist a few special cases such as k-out-of-(2k — 1)

systems [83], which can be represented by an MDD with a regular structure.

3.2.2.5 Dynamic Creation

The static and direct approaches are useful in the creation of specific functions. However,
they are not suitable for general diagram creation. For that, we use the so-called dynamic
approach, which utilizes Shannon’s expansion described in section 3.1.2. The principal idea
is to first split the function into multiple simpler functions joined with binary operations.
Then we start by directly or statically creating diagrams for the simpler functions. After that,
we continue by gradually merging those diagrams into more complicated ones. In the end,

we are left with a single diagram representing the desired function.

3.2.2.5.1 Apply

The merger of two diagrams can be realized using a recursive algorithm called apply
introduced for BDDs by Bryant[11][84] and later generalized for MDDs [12]. The
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algorithm uses the following two recursive relations derived from Shannon’s expansions.

For two Boolean functions f and g and Boolean binary operation © it holds that [11]:

F O 9@ =x(f1;,2) © g(1;,x) v x5 (f(0;,x) © g(0;,x)), (3.10)

and generalized for two integer functions f and g and binary operation © it holds that [12]:
m;—1

FON@ =) (oK« (fke®) O glks ). (3.11)

k=0
The input of the apply algorithm is two diagrams and a binary operation © closed on the
codomain of the function i.e., of the following form:
{0,1,..,m—-1}2 - {0,1,..,m — 1}, (3.12)
The algorithm is invoked on the roots of the diagrams. In each step, it visits a pair of nodes
—one from each diagram — and either creates an internal or terminal node. The terminal node
can be created in two situations:
1. When both nodes are terminal in which case the value in the new node is determined
by applying the binary operation © on the values represented by the nodes.
2. When one of the nodes is a terminal node representing an absorbing element of the
binary operation (. Then, the value in the new node is the absorbing element.
The creation of the terminal node is the terminating case for the recursion.

Most of the time, the nodes that enter the step are both internal nodes (or one of them
is a terminal representing a non-absorbing element). Let A and B be nodes that entered the
step. Let us assume without loss of generality that iy, < ig. If one of the nodes is terminal,
we proceed as if it had the index equal to its level in which case it will certainly be greater
than the other index. The result of the step is a new internal node associated with a variable
x;,. The m;, sons of the new node are obtained with a recursive call of the step with a pair
(Ag,B) fork = 0,1, ...,m;, — 1. Alg. A.4 presents complete pseudocode.

An essential part of the apply algorithm is to avoid processing the same pair of nodes
multiple times. If this is satisfied the complexity of the algorithm is O(s; * 8,) where 84, 8,
are the sizes of the input diagrams. This can be achieved by maintaining a cache table with
a pair of pointers to nodes that entered the step of the algorithm as key and a pointer to the
node created in the step as value. In each step the cache table is first queried, and if there
already is an entry for the current pair of nodes that node is returned as the result of the step.

The algorithm can be made more efficient thanks to the node sharing and

immutability of nodes (section 3.2.1). The improvement can be made by following the
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observation that if node C is the result of step of the apply call with nodes A4, B and operation
O it will also always be the result in the future if the step is called with the same arguments.
Thus, it is beneficial to maintain the cache table globally — shared for all apply calls. The
cache requires a small adjustment in this case. Since apply works for any binary operation,

the operation (unique integer 1D) must be part of the key. Therefore, a cache query could
have the following form CONTAINS (applyCache, (left,right, GETID(Q))). Since many

binary operations are commutative, further improvement can be made by adjusting the cache
table in such a way that keys (left, right, GETID(®)) and (right, left, GETID(®)) map to
the same value. For instance, if we use a hash table to implement the cache, we can utilize
some symmetric function (e.g. bitwise exclusive OR) to combine hashes HasH(left) and
HasH(right) and adjust the equality comparison so that it compares the key triplets as sets
(i.e. not considering the order of elements). Finally, the last aspect of caching to consider is
the size of the cache table, which could grow significantly for larger diagrams. Because of
this, many implementations use a fixed size for the table. For example, a hash table may
resolve collisions by overwriting existing entries. This can result in re-computation of some
results but provides a reasonable tradeoff with the memory complexity of the algorithm.
Fig. 3.16 shows an example of the apply algorithm in the merger of two BDDs using
the logical conjunction. Nodes of the input diagrams are marked using upper-case letters,
and the nodes of the resulting diagram are marked using a pair of letters, which signifies

nodes from the input diagrams that were processed in the step that created the resulting node.

(AE)

Fig. 3.16 Merger of two BDDs representing Boolean functions f (x) = x;x; (left) and g(x) = x, vV
x5 (middle) using the apply algorithm with logical conjunction
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3.2.2.5.2 ITE and CASE

There exists an alternative to the apply algorithm for Boolean functions — the If-Then-Else

(ITE) operator [61]. ITE is a ternary Boolean operator defined as:
ITE(4, B, C) = if A then B else C, (3.13)

where A, B, and C are Boolean functions (nodes of a diagram). Like apply, using the ITE
operator we can create BDD for any function by merging BDDs of simpler functions. Also,
like apply, the merger of diagrams using ITE is a recursive procedure. However, unlike
apply, the ITE operator does not take a Boolean binary operation as its input. Instead, all
Boolean operations can be defined in terms of the ITE operator [60]. Tab. 3.3 contains the
definitions for common Boolean operations.

The ITE operator is limited to BDDs and Boolean functions. A generalization called
CASE exists that can manipulate MDDs and integer functions. CASE is a (m + 1)-ary

operation defined in a way similar to the generalized Shannon’s expansion (3.2) as [12]:
m—1
CASE(A, By, By, ..., Byy_y) = Z ({4 & Kk} * By). (3.14)
k=0

Just like with the ITE operator, we can use the CASE operator to define common
operations such as min and max [85] for an m-valued logic function. In Tab. 3.4 we show
the definitions for the 4-valued logic function presented in [85]. Generalization to m-valued

logic is relatively straightforward, thou not as simple as using the apply operation.

Tab. 3.3 Definitions of common Boolean operations in terms of the ITE operator

Name Expression ITE form
Logical negation a ITE(a, 0,1)
Logical conjunction ab ITE(a, b, 0)
Negated logical conjunction (NAND) ab ITE(a, b, 1)
Logical disjunction aVvb ITE(a, 1,b)
Negated logical disjunction (NOR) aVvb ITE(a,0,b)
Exclusive logical disjunction (XOR) a®b ITE(a, b, b)

Tab. 3.4 Definitions of min and max operations in 4-valued MLV using the CASE operator

Name Expression CASE form
Minimum min(4, B) CASE(4, 0,CASE(B,0,1,1,1), CASE(B, 0,1,2,2), B)
Maximum max(4, B) CASE(4, B,CASE(B, 1,1,2,3),CASE(B, 2,2,2,3),3)
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3.2.3 Extended Apply

The basic apply algorithm described in section 3.2.2 accepts any binary operation of the
form (3.12) as its input. However, in some situations, the functions that we need to represent
contain d-ary operators. As an example, let us consider a simple logic circuit depicted in
Fig. 3.17, which implements the following Boolean function:

f(x) = x1x3%3 V x4. (3.15)
If we wanted to create BDD representing function (3.15), using the apply algorithm, it would
be called in the following way:

ApPLY(APPLY(APPLY (X, X5,A), X3,A), X4,V),
where symbol X; represents BDD representing variable x;. However, since the AND gate
that realizes the logical conjunction is a three-input gate, it would be more convenient and
descriptive to use the apply algorithm in the following way:
APPLY(APPLY (X1, X5, X3,A), X4,V)

i.e., to be able to call apply with three input diagrams instead of two.

X1 —

X —

X3 —

f)

X4

Fig. 3.17 Simple combinatorial circuit with four inputs and one output

Any series of applications of binary associative operation (O can be easily extended to

a single d-ary operation denoted as (® in the following way:

fi O (£ © C(famr © f) )
=f10L0..0Of-10fa (3.16)
=0q (f1 f2 s fa—1, fa)-
The d-ary version (©, of the operation © is simply defined in terms of multiple applications
of the binary version of the operation. Using the notation (®,4, we can also express the

relation (3.16) as the following recurrent relation:
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Oa (1 f2r - fe-1, fa)
=0g-1 (fpfz» w2 (fd—l»fd))

=0g-2 (fpfz» Oz (fd—z;@z (fd—l'fd))) (3.17)

=0: (£.02 (£02 (02 (fa-202 Gun 1)) )

Furthermore, we can express the relation (3.11) that is a key part of the apply operation as

follows:

O, (f1, f2) (%)
=0, (f1 (x), f> (x))

m;—1

= Z {x; o k} = (@2 (f1(ki:x),f2(ki'x)))'
k=0

(3.18)

If expressions f, f5, ..., f4 In formula (3.17) are functions of the same variables defined by
Boolean vector x, the recurrent relationship defined by formula (3.17) can be transformed

into the following relationship:

Oa (f1s f2r s fa—1, fa) (%)
=Qq (i(®), (%), ..., fa—1 (), fo(x))

=Qu-1 (A, (0, .0z (famr (1), fa () )

_ (3.19)
=0 (A®).02 (@2 (faes (0, fu®)) )
=0, (f1(x).@2 (s Oz (fa-1, fa) )(x))
By combining this formula with formula (3.18), we obtain:
@d (flffZl ""fd—ll fd)(x)
=03 (f1(x);®z (., O2 (fa-1, fa) )(x))
o (3.20)

= > o k(02 (Ailke 9.0 (.02 (fao fo) -)) (ki )
k=0

m;—1

= 2 {x; © k} = (@2 (f1(ki;x).@z (---.@2 (fd—1(ki,x),fd(ki,x)) )))

k=0
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Finally, according to (3.16), nested parentheses in (3.20) can be removed by replacing the
prefix operator (O, by the infix version ©. This results in an extended version of the
relation (3.11):

m;—1

Oa (i for s )@ = ) (0 & K+ (Oa (o for s fd ki ). (32D)

k=0
Using this relation, we present a novel extended version of the apply algorithm, which
accepts d-tuple of diagrams and d-ary operation. The algorithm is one of the contributions
of this thesis. The new version is similar to the apply algorithm described in section 3.2.2.
The key difference is that in each step it visits d-tuple of nodes, one from each diagram.
Alg. 3.1, Alg. 3.2, and Alg. 3.3 contains the complete pseudocode of the extended apply. In
the pseudocode, functions like RooT, VALUE, INDEX, or the auxiliary GETSON applied on the

tuple operate on each element of the tuple separately returning a tuple of individual results.

procedure EXTENDEDAPPLY((D1, D2, ..., Dg), Oq)
root < EXTENDEDAPPLYSTEP(ROOT((D4, D2, ..., Dq)), Oa)
return MDD(root)

end procedure

Alg. 3.1 Entry point of the extended apply algorithm

procedure EXTENDEDAPPLYSTEP((N1, N2, ..., Ng), Oq)
if CONTAINS(applyCache, (N1, Ny, ..., Ng)) then
return Lookupr(applyCache, (N1, Nz, ..., Nq))
end if
node < NULL
if ALLTERMINAL((Ng, No, ..., Ng)) then
node «— CREATETERMINALNODE(®d(VALUE((N1, N2, ..., Ng))))
else if ANYABSORBING((®, (N1, Nz, ..., Ng)) then
node «— CREATETERMINALNODE(ABSORBINGELEMENT(())
else
i «— min(LEVEL((N1, Na, ..., Na)))
sons «— MAKETUPLE(m; )
for k =0 to m; do
sons[k] «— EXTENDEDAPPLYSTEP(GETSON(i, (N1, Nz, ..., Ng), k), ©Od)
end for
node «— CREATEINTERNALNODE(i, Sons)
end if
PuT(applyCache, (N1, N, ..., Ng), node)
return node
end procedure

Alg. 3.2 Recursive step of the extended apply algorithm
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procedure GETSON(i, node, k)
if INDEX(node) =i then
return SoNn(node , k)
else
return node
end if
end procedure

Alg. 3.3 Helper function used in the step of the extended apply algorithm

The extended apply algorithm gives the same results as multiple calls of the basic apply
algorithm. Its main advantage is the convenience — a single call to the extended apply can
replace multiple nested calls to the basic apply. On the other hand, its disadvantage may lie
in its complexity, which is 0(s; * 8, * ... * .8,4), Since, in the worst case, we process each d-
tuple of nodes.

The big-0 notation sets the upper bound on the number of steps of the algorithm,
which may not necessarily reflect the real performance of the algorithm. Therefore, an
experimental comparison of the apply and extended apply is an interesting task. Furthermore,
the comparison may also provide insight into the feasibility of the extended apply since its
heavy utilization of the recursion may be limited by the default size of the call stack.

3.2.4 Diagram Manipulation

Diagrams can be queried, evaluated, and manipulated in various ways. In this section, we
describe selected diagram algorithms that we use later in the description of algorithms for

reliability analysis.
3.2.4.1 Satisfy-count

The first algorithm that we describe is called satisfy-count introduced by Bryant [11] for
BDD. We describe a version generalized to MDD. Satisfy-count is a simple query on the
diagram that returns the number of satisfying variable assignments i.e., if the diagram
represents a function f the algorithm returns the number of input vectors x such that f (x) =

J where the diagram and the value j are parameters of the algorithm.
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Fig. 3.18 Evaluation of a function represented by a decision diagram

The pseudocode of the algorithm is presented in Alg. A.5. To understand the rationale of the
algorithms first let us consider a simpler algorithm that only counts the number of paths from
the root node to the terminal node containing the value j. Each internal node on a path from
the root node to a terminal node represents all possible values of the variable x;. Therefore,
the number of paths starting at a given internal node can be calculated as the sum of the
number of paths starting at each son of the node. However, an edge can skip over some levels
and therefore a single path can correspond to multiple input vectors, as we can see in
Fig. 3.18. In the figure, the highlighted path corresponds to three state vectors. Thus, to
account for the skipped levels, we need to multiply the number obtained from the son by the
number of vectors corresponding to skipped levels. In the pseudocode, this number is

calculated by the DomAINPRODUCT function.

3.2.4.2 Cofactor

We have encountered cofactor (3.2) in the definition of the decision diagram and the apply
algorithm for its dynamic creation. However, in neither of these situations, we were required
to calculate the cofactor of a function directly. Nevertheless, the calculation of the cofactor
of a function is an essential step in various algorithms — for example, in the calculation of

logic derivatives described further in section 3.3.4.
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The cofactor algorithm for MDD is a generalization of the restrict? algorithm
proposed by Bryant[11] for BDD. Computation of cofactor f(a; x) is asimple
transformation of the diagram. The core idea is to remove all internal nodes associated with
variable x; and redirect all edges ending in such nodes into its at™ son (where a €
{0,1, ..., m; — 1}). However, the operation must maintain the invariants of node uniqueness
and node immutability. Therefore, the algorithm produces a new diagram representing the
cofactor without altering the original diagram. The new diagram, however, may share many
nodes with the original. The pseudocode of the algorithm is presented in Alg. A.6.

In Fig. 3.19, we can see an example of MDD representing function f(x) and MDD
representing the cofactor (24, x). The grey node in the right part of the image highlights
the difference between the original MDD and its cofactor.

Fig. 3.19 MDD representing function f(x) (left) and MDD representing cofactor (24, x)

The basic version of the cofactor algorithm presented in the pseudocode fixes the value of
only one variable at a time. However, in some situations, we need to fix the value of multiple
variables. This can be achieved by simply using the cofactor algorithm multiple times.
Unfortunately, such an approach would result in repetitive re-computations. A much better
approach is to generalize the cofactor algorithm so that it accepts a list of pairs (i,a). The
generalized version works in a very similar way with the difference that it “skips” nodes on

multiple levels — specified in the list of pairs.

2 Cofactor of a function is also known as restriction of a function in some literature — hence the name
of Bryan’s algorithm
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3.2.4.3 Transform

Another algorithm that we utilize in the calculation of logic derivatives is the transform
algorithm. This algorithm operates on the values of the function stored in the terminal nodes,
transforming them using function y of the following form:

y(@):{0,1,..,m—-1}-{01,...,m—1}, (3.22)
where a € {0,1, ..., m — 1}. Just like the cofactor algorithm, the transform algorithm’s core
part is arecursive step. The pseudocode of the algorithm is presented in Alg. 3.4 and
Alg. 3.5. Implementation of the step is rather simple. When it visits an internal node it simply
recurses deeper into the diagram and afterward creates a new node. The transformation
happens when the step visits a terminal node A in which case its returns new terminal node
representing value y(4).

The transform algorithm can be used to implement various unary operations [9] such
as complement, successor, or predecessor. For example, to define the complement of
an integer function we would use the function y; defined as:

vi(@=m-1-a. (3.23)
Fig. 3.20 depicts an example of an MDD representing an integer function and an MDD
representing the complement of the function obtained using the transform algorithm.
Another frequent use case is when we need to narrow the codomain of a function — for
instance, to transform it into a pseudo-logic function (2.5). In such a case, we may use the
following y, function (possibly with any other relational operator):

(1, az=j
vz(a) = {0, otherwise,

(3.24)
where j € {0,1, ..., m — 1}.

Finally, the last, less obvious, use case that we present is in the implementation of
the reduce algorithm [11]. The reduce algorithm transforms any MDD that contains
duplicate or redundant nodes into canonical form by “removing” all such nodes. The

algorithm can be implemented using the transformation with the identity function defined

as:

ys(a) = a. (3.25)
The resulting diagram contains no duplicate and no redundant nodes thanks to the
factory functions (Alg. A.1, Alg. A.2), since each node is re-created by the functions —which

only produce unique nodes.
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Fig. 3.20 MDD representing an integer function (left) and MDD representing complement of the
function (right)

Let us note that the same transformation of an MDD can be achieved by using the
apply algorithm with a binary operation and an MDD representing a constant function with
a value equal to the neutral element of the binary operation. However, we consider such
a solution less efficient and less readable. Thus, we present the pseudocode directly in this

section although the algorithm itself and ideas it utilizes are not exactly novel.

procedure TRANSFORM(diagram, y)
root — RooT(diagram)
newRoot «<— TRANSFORMSTEP(root, y)
return MDD(newRoot)

end procedure

Alg. 3.4 Entry point of the transform algorithm

procedure TRANSFORMSTEP(node, y)
if ISTERMINAL(node) then
return CREATETERMINALNODE(y(VALUE(node)))
end if
if CONTAINS(memo, node) then
return Lookur(memo, node)
end if
i «— INDEX(node)
sons «— MAKETUPLE(M;)
for k =0 to m; do
oldSon < Son(node, k)
sons[k] «<— TRANSFORMSTEP(oldSon, y)
end for
newNode « CREATEINTERNALNODE(], Sons)
PuT(memo, node, newNode)
return newNode
end procedure

Alg. 3.5 Recursive step of the transform algorithm
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3.2.4.4 General Diagram Manipulation

When we analyze the pseudocodes of the cofactor and transform algorithms, we may notice
that their step has a similar structure —which is no coincidence. As a matter of fact, we would
see a similar structure in the implementation of other algorithms as well. In Alg. 3.6 we
present a pseudocode that tries to capture ageneral structure of arecursive diagram
transforming the algorithm.

In the pseudocode, there are a few conditions that terminate the recursion. The first
one (denoted as (a)) deals with memoization, which we address below. The second one
(denoted as (b)) identifies a situation that does not require further evaluation — the
identification of the situation is checked by the function NONEEDTOCONTINUE. An example
of such asituation can be found in the cofactor algorithm (Alg. A.6). The third point
(denoted as (c)) is checked by the NEEDSPROCESSING function, which identifies nodes that
require some transformation, which is expressed by the PRocEss function. At this point, the
processing function can terminate the recursion (as we do in the pseudocode) or the
processing of the diagram may continue — depending on the specifics of the algorithm.

Finally, let us note the presented general algorithm does a transformation of the node
that entered the step. However, the result of the step does not necessarily need to modify the
node (more precisely, to return a new node). It can also just compute and return some value
like the satisfy-count algorithm (Alg. A.5) does.

procedure GENERALSTEP(node, ...)

if CONTAINS(memo, node) then > (a)
return LOOKUP(memo, node)

end if

if NONEEDTOCONTINUE(node) then > (b)
return node

end if

if NEEDSPROCESSING(node) then > (c)
return PROCESS(node)

end if

i < INDEX(node)

sons «— MAKETUPLE(m;)

for k =0 to m; do
oldSon « SonN(node, k)
sons[k] «— GENERALSTEP(oldSon, ...)

end for

newNode « CREATEINTERNALNODE(], sons)

PuT(memo, node, newNode)

return newNode

end procedure

Alg. 3.6 General structure of a step of a recursive diagram manipulation algorithm
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3.2.4.4.1 Result Memoization

Considering the efficiency of the algorithm utilizing the step, the essential part of the step is
the memoization of the results. Since the nodes are immutable, the step must always return
the same result for the same input node®. The step of the algorithm may try to visit some
nodes more than once because of the node sharing. Consequently, to avoid expensive
recomputations that would necessarily lead to the same result we maintain a lookup table of
computed results — a memo. A key to the table is a pointer to the input node and the value is
either a pointer to a new node or some numeric value — depending on the specifics of the
actual algorithm. Our library TeDDy also implements an alternative to the lookup table — it
uses the nodes themselves to store the results of the computation at the given node.

The memoization ensures that each node is processed at most once. Therefore, the
computation complexity of the algorithm is O(s * o * £), where s is the number of nodes in
the diagram, O(o) is the complexity of the node processing, and O(#) is the complexity of
querying the table. Typically, the complexity of the node processing operation is O(1). The
complexity of the table query depends on the implementation of the table. For example,
when a hash table is used, the complexity is also O(1). Our approach of storing the
memoized result in the nodes also has complexity 0(1). Consequently, the complexity of

the algorithm is practically 0(s).

3.2.4.4.2 Order of Variables

In all pseudocodes, we assumed — for simplicity — that the diagram uses the default order of
variables. However, when we consider other orders of variables, we need to differentiate
INDEX(A) and LEVEL(A). A possible approach is to also store the level of a node as its
property. However, such an approach would use more memory than necessary. Since there
is a close relation between the level and index of nodes on that level, it is sufficient to
maintain two mappings — level-to-index and index-to-level, which can be simply

implemented as arrays where the index corresponds to level and index respectively.

3 With the assumption that the step is not part some randomized algorithm — neither of the algorithms
that we consider in the thesis involve randomness.
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3.3 Decision Diagrams in Reliability Analysis

The structure function is an integral part of the reliability analysis. Definitions (1.1), (1.2),
and (1.3) of the structure function agree with definitions (2.2), (2.3), and (2.4) of different
discrete functions. Thus, an obvious application of decision diagrams is the representation
of the structure function. In this section, we describe the evaluation of selected reliability

characteristics of a system using the structure function represented by a decision diagram.

3.3.1 Structure Function Representation

The typical approach to the representation of the structure function is to represent the
function with a single MDD. In section 3.2.2 and section 3.2.3, we have presented various
approaches to the construction of the MDD. The diagram construction is a crucial aspect of
the reliability analysis of complex systems, because of the considerable size of the diagram.

Besides the straightforward approach to the structure function representation, there
exists an alternative option for the description of MSS. The idea is to describe each system
state individually using a pseudo-logic function [86]. For example, let us consider a structure
function ¢(x) describing a 3-state MSS. Then we can use two functions ¢(x) > 1 and
¢(x) = 2 to fully describe the system. In general, for an m-state MSS, we need to use m —
1 functions describing states 1,2, ..., m — 1. In Fig. 3.21 we can see an example of a structure

function describing 3-state MSS represented using both approaches.

58]
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1

Fig. 3.21 Structure function ¢ (x) represented using a single diagram (left) and a series of diagrams
(right) representing functions ¢(x) > 1 and ¢(x) > 2 respectively (right)
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An interesting question is whether one of the approaches is more efficient with regard to the
number of unique nodes in the diagrams or the speed of algorithms operating on the

diagrams.

3.3.2 Topological Analysis

System state frequency Fr=/ (1.9) is a simple topological characteristic of a system. It is
defined as the relative number of state vectors for which the system described by structure

function ¢ is in state j:

_ Qg
Fri = ai(;, (3.26)

where a4, denotes the total number of state vectors i.e., the size of the domain of the function
(Tab. 2.1), and a4 ; denotes the number of state vectors x such that ¢(x) = j. Therefore, to
calculate the state frequency we need to calculate the numbers ay ; and ag. ag can be

calculated by simply multiplying the domains of all variables:

n
a, = Z m,, (3.27)
i=1
which simplifies to:
ag =mn, (3.28)

for the m-valued logic function.

A straightforward approach to the calculation of a, ; would be to evaluate the system
for each possible state vector and count the number of satisfying input vectors. However,
such a naive approach would be computationally infeasible even for tens of variables.

Evaluation of the diagram is a simple traversal from the root to a terminal node as
shown in Fig. 3.18. In general, the number of state vectors corresponding to a path p can be

calculated using the following formula:
Ap = Hmi' (3.29)

where J,, is the set of indices of variables that are not present in path p. Therefore,
an improvement to the calculation can be made by using the following formula:

Pj

ay; = Z a, (3.30)

»
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where P; is the set of all paths leading to the terminal node representing value j.
Unfortunately, even the improved approach does not scale well since the number of possible
paths is still considerable — it may depend on the number of variables exponentially.

Fortunately, it is possible to count the number of satisfying input vectors — which, in
our case, is equivalent to the number of state vectors — of an integer function represented by
MDD using the satisfy-count algorithm described in section 3.2.4.

The solution utilizing the satisfy-count algorithm is efficient with respect to the
number of nodes — the complexity of the algorithm is 0(.8) where s is the number of nodes
in the diagram. However, it has a technical limitation. The number a ; can be very large
even for tens of variables. The problem is that many programming languages are limited by
the finite precision of their numeric types — typically 64-bit integers. The problem can be
addressed by using alibrary for multiple precision arithmetic such as GMP [87].
Nevertheless, the computation for larger functions — containing hundreds or thousands of
variables — would involve computation with huge numbers and therefore could be time-
consuming.

This problem can be partially addressed in the case of BSS analysis. A modification
of the satisfy-count algorithm exists called satisfy-count-In*, which — as the name suggests —

calculates the logarithm of the number of satisfying input vectors i.e., the number log, ay ;.
Since the algorithm works with logarithms, it is not susceptible to integer overflows.
Knowing the logarithm log, a4 ;, we can subsequently calculate the state frequency by
rewriting the definition (3.26) in terms of logarithms in the following way:
Fr=/ = —=
&g
2logz(ag, ;)
) m (3.31)
— ploga(ag j)-logz(ag)

— Zlogz(ad,_]-)—logz(zn)

— Zlogz(ad,yj)—n.

4 Implemented in BuDDy BDD package [68]
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The above solution does not scale to MSS — especially nonhomogeneous MSS. One of the

reasons is that the denominator « is a product (3.27) that cannot be simplified to single

exponentiation and therefore cannot be further simplified using logarithm. The key to
efficient calculation is to avoid the computation of the number of state vectors altogether.
We propose a simple general algorithm that can be used to analyze nonhomogeneous MMS,
and consequently homogeneous MSS and BSS. The algorithm follows the general structure
of diagram manipulation (Alg. 3.6). Its pseudocode is presented in Alg. 3.7 and Alg. 3.8.
The algorithm itself is a simplified version of the probabilistic algorithms described further
in section 5.1.

procedure STATEFREQUENCY(diagram, j)
root — RooT(diagram)
frequency «— STATEFREQUENCYSTEP(root, j)
return frequency

end procedure

Alg. 3.7 Entry point of the state-frequency algorithm

procedure STATEFREQUENCYSTEP(node, j)

if ISTERMINAL(node) A VALUE(hode) = j then
return 1.0

end if

if ISTERMINAL(node) A VALUE(hode) # j then
return 0.0

end if

if CONTAINS(memo, node) then
return LOOKUP(memo, node)

end if

frequency « 0.0

i — INDEX(node)

for k=0 to mido
son < SoN(node, k)
sonFrequency < STATEFREQUENCYSTEP(son)
frequency « frequency + sonFrequency * (1 / mj)

end for

PuTt(memo, node, frequency)

return frequency

end procedure

Alg. 3.8 Recursive step of the state-frequency algorithm

Our algorithm is general and therefore there is no need to use the specialized version that
utilizes satisfy-count-In for BSS. Furthermore, our algorithm uses only addition and
multiplication whereas the other one uses exponentiation and logarithms extensively. This
suggests that our algorithm should perform better in the case of BDD. Nevertheless, an

experimental comparison of the two algorithms is needed to confirm this assumption.
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3.3.3 Probabilistic Analysis

In section 1.5 we described probabilistic analysis as a more precise way to analyze a system
since, in addition to the system topology, it also considers the reliability of its components.
Therefore, the input of algorithms for the probabilistic analysis is the diagram representing
the structure function and the component state probabilities (1.14).

One of the fundamental tasks of probabilistic analysis is the calculation of system
state probabilities. This task involves the evaluation of the probability that the structure
function ¢(x) evaluates to value j. System state probability is closely tied to system
availability (1.19) and unavailability (1.20) — one can be computed in terms of the other.
Calculation of various importance measures also involves the evaluation of the probability
that a derivative of the structure function evaluates to 1. Hence, the fundamental algorithm
for the probabilistic analysis is the algorithm that calculates the probability that a function
represented by MDD evaluates to value j given component state probabilities (1.14).

The probability that MDD evaluates to value j agrees with the so-called Node
Traversing Probability (NTP) [48] of the terminal node representing value j. Before we
proceed with the calculation of NTP, we first need to consider path probability. Recall that
a path is an alternating sequence of internal nodes and edges that lead to a terminal node.
For the calculation, let us view the path as a sequence of pairs (i;, k;) where i; is the index
of variable associated with [ internal node and k; is the edge we chose in the I internal
node. Assuming that the component state probabilities are independent we can calculate the
path probability p of path p as [48]:

Pp = 1_[ Pij (3.32)
(L.Kep

we calculate the NTP of a terminal node T; as the sum of path probabilities leading to T; as:

PJ
NTP(T;) = Z oy (3.33)
»

Definition (3.32) shows that we can associate component state probabilities with edges in
the MDD. We refer to such MDD as probabilistic MDD (Fig. 3.22). Considering the
implementation of the MDD, it would not be efficient to store the probabilities directly in
the edges — the same information would be stored multiple times. Therefore, the
implementations typically store the probabilities in a matrix P, ,,. Nevertheless, the

visualization of probabilistic MDD is good for understanding probabilistic calculations.
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Fig. 3.22 Probabilistic decision diagram with component state probabilities attached to edges

In section 3.3.2 we have shown that calculation involving enumeration of all possible paths
is not effective. Thus, an efficient evaluation of NTP(T;) needs amore sophisticated
approach. In section 5.1, we describe two principal approaches to the calculation along with
their use cases and experimental comparison.

Furthermore, so far in this section we only described the time-independent version
of the probabilistic analysis. Therefore, in section 5.2, we discuss how to adjust existing
algorithms for the time-independent analysis to use them with time-dependent probabilities.

3.3.4 Logic Derivatives

Logic derivative is an essential tool for the calculation of different reliability characteristics
— mostly for the calculation of various importance measures as described in section 2.3.
Therefore, the calculation of the logic derivative of the function represented by MDD is
another fundamental task of reliability analysis.

A straightforward approach to the calculation is to follow the definition of the
derivative. However, different types of derivatives exist (introduced in section 2.2.2) — each
with a slightly different definition. For the moment, let us consider the directional logic
derivative (2.12). Alg. 3.9 contains pseudocode for the calculation of the derivative using
diagram manipulation algorithms introduced in section 3.2.4. Notice that the code simply
calls algorithms corresponding to operations used in the definition. The notation of the
second argument of the TRANSFORM algorithm (= j) denotes a single-parameter function that
returns true if the parameter is equal to j and false otherwise. This is known as partial
function application [88] — the original function being the two-parameter equals (=)

function. Also, notice that we can merge the diagrams using logical conjunction A since the
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call to the transform algorithm ensures that both diagrams have Boolean-valued output.
Fig. 3.24 shows a specific example of the calculation of the derivative using the algorithm
Alg. 3.9.

procedure DPLD(diagram, i, j, h, s, r)
before «— CoFAcTOR(diagram, i, S)
after < CoFACTOR(diagram, i, r)
before’ < TRANSFORM(before, (= j))
after’ < TRANSFORM(after, (= h))
result < ApPpLY(before’, after’, A)
return result

end procedure

Alg. 3.9 Calculation of directional logic derivative

Let us consider one more example using the same approach — the calculation of the integrated
directional logic derivative of type Il (2.19). The pseudocode for this calculation can be
found in Alg. 3.10. Its structure is very similar to Alg. 3.9, the only difference is that it does
not involve any transformation of the diagrams and that it uses the greater than > operator

to merge the diagrams.

procedure IDPLDTYPEII(diagram, i, s, 1)
before — CoFAcCTOR(diagram, i, S)
after — COFACTOR(diagram, i, )
result — AppLY/(before, after, >)
return result

end procedure

Alg. 3.10 Calculation of integrated directional logic derivative of type Il

Fig. 3.23 Fig. 3.24 and show an example of the calculation of DPLD of type I using the
approach described by Alg. 3.9. We could use a similar approach to calculate the other
derivatives introduced in section 2.2.2. The derivatives can be used to evaluate various
system characteristics such as MCVs [89] or IMs such as Sl [41]. Furthermore, in
conjunction with component state probabilities, we can evaluate more IMs such as Bl [41]
and use further transformations of the derivative to calculate FV1 [43], [44]. Consequently,
we can see that decision diagrams and logic derivatives provide a comprehensive framework

for the reliability analysis of complex systems.

87



UNIVERSITY OF ZILINA

0 "2,

v

1 2

¢(x) (nb(olrx) ¢(111x)
diagram before after

Fig. 3.23 MDDs representing structure function and intermediate diagrams used in the calculation
of directional logic derivative
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Fig. 3.24 MDDs representing intermediate diagrams and resulting diagram representing the
directional logic derivative

We have presented a basic approach to the calculation of logic derivatives. As long as we
have an MDD of reasonable size representing the structure function, the calculation of the
derivative is also reasonably efficient. The most expensive step of the calculation is the call
to the apply algorithm (refer to section 3.2.4). However, even with the two presented
examples, we may have noticed that the calculation is almost identical. Hence, in section 4.5
we present a single universal algorithm for the calculation of any derivative along with an

experimental comparison with the basic approach.
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3.4 MDD-Related Tasks Open for Investigation

In section 3.3, we established the principal steps of the reliability analysis using decision

diagrams. The steps can be summarized as follows:

e construction of the structure function;

e creation of decision diagrams;

e adjustments and transformations of the diagrams;
e evaluation of the diagrams;

e and interpretation of the results.

The listed problems involve several challenges in the context of analysis of complex
systems. Consequently, we have identified multiple research problems that address the
challenges. Some of the problems involve experimental comparison of existing algorithms
in different use cases whilst others require an introduction of new algorithms or
enhancements of existing algorithms. Specifically, we have identified the following research

problems:

e generating random decision diagrams representing structure functions — required
for exhaustive experimental comparisons;

e order of diagram merging and its influence on the speed of diagram creation
(section 3.3.1);

o different ways of representation of a structure function of a series-parallel system
and their influence on the size of the diagram (section 3.3.1);

e experimental comparison of our algorithm for the calculation of state frequency
with alternative approaches for BDDs (section 3.3.2);

e introduction of a new universal algorithm for the calculation of logic derivatives
and experimental comparison with existing approaches (section 3.3.4);

e experimental comparison of existing algorithms for the probabilistic evaluation
of decision diagrams (section 3.3.3);

e adjustment of existing algorithms for probabilistic evaluation of decision

diagrams with time-dependent probabilities (section 3.3.3).
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4 Efficient Diagram Creation and Manipulation

The structure function is an integral part of the reliability analysis process. Considering that
complex systems consist of numerous components it is essential to represent them
efficiently. In this thesis, we focus on decision diagrams, which have proven to be a suitable
structure for the task [44], [81], [90]. However, even though the diagrams are efficient, their
size can be considerably high for large systems. Therefore, it is important to develop

algorithms and approaches that can speed up diagram creation and manipulation.

4.1 Generating Random Diagrams

Chapter 4 and Chapter 5 deal with efficient diagram manipulation, which involves
a considerable number of experimental comparisons. A comparison should be done, ideally,
on diagrams with different structures and sizes. Therefore, in this section, we describe the

methods we use for the generation of random decision diagrams.

4.1.1 Min-Max Expressions

The first approach is based on SoP expressions, specifically, on their generalized form where
the logical conjunction is generalized using the min function and logical disjunction using
the max function. The reason for this choice of generalization is that it is commonly used in
the description of series-parallel systems (section 1.3.1). Another reason is that it is easy to
represent and generate such expressions. For example, let us consider the following
expression:

f(x) = max(min(xy, x5, x3), min(xy, x3, x,), min(x,, x3, X4)). 4.1)
We can represent the expression conveniently using the following list of lists of integers:

[[1,2,3],[1,3,4],[2,3,4]].

Furthermore, we can also generate such a list conveniently by generating random integers
from the range [1,2,...,n) where n is the number of variables. The algorithm for the

generation has the following parameters:

e number of terms — the number of nested lists;
e size of a term — the number of variables in a single term;
e n—the number of variables;
e type of the function:
e Boolean,
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e MVL —requires additional parameter m,

e or integer — requires additional parameters m and m; fori = 1,2, ..., n.

Subsequent creation of a diagram from such an expression is straightforward. We start by
creating a diagram representing each nested list using the min operation and then we proceed
with the merge of the diagrams using the max operation. This process is also known as fold,

which we describe in section 4.2.1.2.

4.1.2 Series-Parallel Trees

The min-max approach is suitable for generating general MDDs. The average size of the
generated MDD can be influenced by adjusting values of the parameters e.g., the number of
terms or size of a term. A possible drawback of the approach is that generated MDDs do not
correspond to the structure function of specific system types. Therefore, the second approach
that we use — which we call the series-parallel trees approach — aims to generate MDDs
representing structure functions of series-parallel systems (section 1.3.2).

To generate such MDD, we use the same process as with the min-max expression.
We start by generating a description of the system, which we subsequently transform into
MDD. The description that we chose for the series-parallel system is the Abstract Syntax
Tree (AST), which we briefly described in section 2.4.1. As an example, let us consider the
series-parallel system depicted in Fig. 1.4 and let us assume that we use the min and max
functions to describe series and parallel connections respectively. In Fig. 4.1, we can see

AST representing the system.

X, Xs X,

Fig. 4.1 AST representing series-parallel system depicted in Fig. 1.4

Creation of the diagram from an AST can be done in a simple post-order traversal of the
tree. In terminal nodes of the tree, we create diagrams representing given variables, and in
internal nodes, we merge diagrams created in the traversal of the sons using the apply

algorithm with min or max operation. We also use a recursive procedure to generate the
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AST itself. The procedure has a single parameter n — the number of variables that the tree
(subsystem) should contain. The terminating case of the recursion is when the value of the
parameter is 1, in which case we create a diagram representing the variable with the next
index from a sequence, which must be shared amongst all recursive calls. In the non-
terminating case, we:

e split the number of variables n in half (or in any other ratio),

e randomly choose either min or max operation,

e generate sons of the new node using a recursive call,

e and finally return a new internal node.

In Alg. 4.1 we can see a pseudocode of the above procedure.

procedure GENERATERANDOMAST(n)
if n =1 then
return NODE(NEXTINDEX())
end if
0p < SELECTRANDOMELEMENT({min, max})
leftSize < n/2
rightSize < n — leftSize
left — GENERATERANDOMAST (leftSize)
right «— GENERATERANDOMAST (rightSize)
node <« NODE(op, left, right)
return node
end procedure

Alg. 4.1 Recursive procedure for the generation of random AST representing a series-parallel
system

4.2 Improvement of Dynamic Creation
4.2.1 Order of Evaluation

4.2.1.1 Left Fold and Tree Fold

The creation of decision diagrams can be a complicated process that can be approached in
several ways — some of which we describe in section 3.2.2. Each approach has its use case,
but the dynamic creation using the apply algorithm plays a pivotal role. During the creation,
we often encounter a situation when we need to merge several diagrams (sequence of
diagrams) using an associative operation @. A typical example of this situation is
the creation of a diagram representing SoP expression or min-max expression since logical
conjunction, logical disjunction, min, and max are associative all operations. As we

described in section 4.1.1, to create a diagram for such an expression, we start by directly
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creating diagrams representing products, and then we proceed to merge them using the sum
operation.

The associativity of the merging operation allows us to join diagrams in numerous
ways, using different orders of evaluations, while still achieving the same result. It is
interesting to consider two orders that we encounter in other areas such as functional
programming [88]. The first intuitive order is called left fold since it simply merges the
sequence of diagrams from left to right. In Fig. 4.2 we can see a tree illustrating the left fold
order of evaluation where the @ nodes represent the merger of diagrams using associative

operation and the house-shaped nodes represent the initial sequence of diagrams.

i~
S5
'/
D
'/
SP)
) Vo
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Fig. 4.2 Left fold order of evaluation

The second order of evaluation is called tree fold and works in a slightly less intuitive yet
elegant way. Compared to the left fold, which works sequentially, the tree fold operates
hierarchically by incrementally merging pairs of neighboring diagrams until there is only
one resulting diagram left. In Fig. 4.3 we can see the tree fold order of evaluation using the

same notation as in Fig. 4.2.
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Fig. 4.3 Tree fold order of evaluation

Notice that the number of diagram mergers (the number of & nodes) is the same for both
approaches. However, an interesting question is whether different orders of evaluation can
influence the speed of diagram creation and whether we can identify properties of the

diagrams that would allow us to pick favorable orders for a specific use case.

4.2.1.2 Fold Comparison

To investigate the influence of the order of evaluation we performed an experimental
comparison of the two folds in the creation of BDDs representing SoP expressions. We used
functions defined in PLA format [9], which is a compressed form of a truth table that can be

easily read as a SoP expression and subsequently transformed into a decision diagram.

4.2.1.2.1 Boolean Functions Representing Adders

In the first experiment, we examined functions representing output bits of bit adders [91]
measuring the time needed to create diagrams representing all outputs of the adder circuits.
In Tab. 4.1, we can see the properties of the functions examined in the experiment. The
number of terms sets the upper bound on the number of terms in the SoP that we merged to
obtain the resulting diagram (some of the terms were skipped in the creation of some
functions because the function did not depend on them). The number of functions agrees
with the number of output bits of the adder and therefore with the number of diagrams
created for the given file. Finally, in Tab. 4.2 we can see a summary of the results that we
presented in the paper [92]. The results clearly show that for each file the tree fold approach
was the more efficient in time required to create diagrams for each output function defined

in the file.
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Tab. 4.1 Properties of the functions used in the experiment

File name Number of terms Number of variables | Number of functions
10-adder_col 10,191 21 11
11-adder_col 20,427 23 12
12-adder_col 40,911 25 13
13-adder_col 81,867 27 14
14-adder_col 163,783 29 15

Tab. 4.2 Average time in milliseconds needed to create BDDs representing outputs of the adder

File name Left fold [ms] Tree fold [ms]
10-adder-col 163 71
11-adder-col 477 180
12-adder-col 1,828 448
13-adder-col 5,342 1,084
14-adder-col 16,579 2,753

The PLA files from the benchmark that we used in the experiment stored the products (rows

of the compressed truth table) in a specific configuration, which might influence the result

of the experiments since it might not represent a general case. Due to that, we repeated the

experiment but before diagram creation, we randomly shuffled the rows of the file. Tab. 4.3

presents the results of the second version of the experiment. The first observation is that the

total time needed for the diagram creation is considerably higher in both cases. Moreover,

the second and more important observation is that the tree fold approach was significantly

slower, which is the opposite of the results of the first experiment.

Tab. 4.3 Average time in milliseconds needed to create BDDs representing outputs of the adder

with randomly shuffled rows

File name Left fold [ms] Tree fold [ms]
10-adder_col 522 789
11-adder_col 2,075 2,975
12-adder_col 7,218 13,031
13-adder_col 27,512 51,063
14-adder_col 94,292 230,151
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4.2.1.2.2 Various Boolean Functions

The results that we obtained from the first experiment are restricted to the specific type of
function representing bit adders. To obtain more general results we repeated the experiment
using a different — more representative set of 39 functions from the IWLS’93 benchmark set
[93]. Tab. 4.4 presents a summary of the results that we presented in the paper [94]. The
value of § in the first column of the table indicates the tolerance used to determine which
version of the fold is considered faster. The fold strategy is considered faster if the ratio of
the time needed to create the diagrams using tree fold (numerator) and left fold (denominator)
is less than 1 — &§. Obviously, with decreasing value of § (with decreasing tolerance), the
number of cases when the left fold was faster and when the tree fold was faster equalizes.
The results show that in a more general set of functions, either of the two folds can be faster

depending on the specific function.

Tab. 4.4 Number of functions in the benchmark in which speed of left fold and tree fold-based
merging are different with respect to value &

Faster
® Left fold Tree fold
0.10 3 10
0.05 10 17
0.01 17 19
0.00 19 20

Both experiments showed that the choice of the folding strategy can have a significant
impact on the speed of diagram creation. Unfortunately, the results imply that neither one of
the examined folding strategies is more efficient in general, though the first experiment
implies that there exists a specific configuration that favors the tree fold approach. Therefore,
in general, it is advantageous for decision diagram libraries to implement both folding
strategies so that the user can test and choose the strategy that is more suitable for his use

case.

4.2.2 Extended Apply

The extended apply algorithm that we introduced in section 3.2.3 provides a more
convenient way of the creation of decision diagrams that represent d-ary operations. To
examine the practical performance of the algorithm, we performed an experimental

comparison [95] with the basic version of the apply algorithm.
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In the experiment, we generated random ASTs of different sizes using an approach

similar to the one described in section 4.1.2, with a difference that the generated trees were

d-way trees (each internal node has d outgoing edges) with d = 2,3,4,5. The size of the tree

was given by the parameter n,, 4., Which set the number of leaf nodes of the AST. Then, we

transformed the AST into BDD using the extended apply algorithm as shown in Tab. 4.5.

The experiments measured the average time in milliseconds (obtained from 1,000

replications) required to transform randomly generated AST into BDD and the average

required number of steps of the algorithm. The results of the comparison are presented in

Tab. 4.6 and Tab.

4.7.

Tab. 4.5 Usage of the extended apply algorithm with different arities in the creation of BDD from
an AST (the last parameter is omitted for clarity)

Extended apply calls

AppLY(APPLY(APPLY(APPLY(D,, D,), D3),D,), Ds )

ApprLY(APPLY(D,, D4, D3), Dy, Ds)

AppLY(AppLY(D,, D4, D3,D,), Ds)

gl bW DN

APPLY(D1; DZ; D3I D4I DS)

Tab. 4.6 The average time in milliseconds requires to create BDD from AST

d
Hmax 2 3 4 5
20,000 79 78 9 113
40,000 177 176 209 252
60,000 280 278 333 401
80,000 384 383 457 550
100,000 500 495 592 712

Tab. 4.7 The average number of steps of the extended apply algorithm

d
Mtmax 2 3 4 5
20,000 500,347 410,656 498,364 555,554
40,000 1,055,979 864,883 1,053,838 1,172,272
60,000 1,637,588 1,339,495 1,643,756 1,827,908
80,000 2,227,090 1,818,588 2,232,094 2,479,476
100,000 2,831,173 2,311,067 2,836,996 3,149,147

98




DISSERTATION THESIS

Overall, the results of our comparison show that the basic version of the apply algorithm
performs better compared to the extended versions —and thus we do not achieve a significant
speedup by using the extended algorithm. On the other hand, the version with arity 3 proved
to be equally fast and more efficient in terms of the number of steps of the algorithm, which
suggests that there may be use cases where the extended versions are more appropriate.
Finally, we consider one of the important benefits of extended apply to be the convenience

of using the algorithm when creating diagrams for functions that are d-ary in their nature.

4.3 Representation of Series-parallel Systems

Series-parallel systems are one of the system types that we consider complex when they
consist of a high number of components. Their nature also allows us to efficiently generate
systems with random topologies (section 4.1.2). Therefore, we chose this topology to

compare different approaches to structure function representation.

4.3.1 Comparison of Single and Series of Diagrams

In the experimental examination presented in our paper [96], we generated arandom
series-parallel MSS and created a single and series of diagrams representing the structure
function of the system. We compared the number of unique nodes needed to represent the
structure function using both approaches. Tab. 4.8 presents a summary of the results, which
clearly show that the series approach is more efficient considering the number of unique
nodes. The number of nodes is one of the key properties of a decision diagram because it
defines the complexity of many algorithms that operate on the diagrams [11]. Therefore, the
possibility of representing series-parallel systems more compactly using the series of

diagrams has a positive impact on our ability to analyze complex series-parallel systems.

Tab. 4.8 Average number of nodes in a single MDD and in a series of MDDs depending on the
number of system components (n) in case of homogeneous series-parallel 3, 4, and 5 state MSS

Single MDD Series of MDDs
" 3 4 5 3 4 5
500 1,995 5,138 10,756 1,002 1,502 2,002
1,000 4,232 11,436 24,926 2,002 3,002 4,002
1,500 6,562 18,210 40,591 3,002 4,502 6,002
2,000 8,959 25,346 57,424 4,002 6,002 8,002
2,500 11,406 32,749 75,128 5,002 7,502 10,002
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4.3.2 Influence of the Order of Variables

One of the limitations of the presented experiment is that we only considered a single order
of variables in the diagram — the default order of variables. However, as we showed in
section 3.1.5, the order of variables can significantly influence the number of nodes. Thus,
to examine whether the series approach is more efficient even with an arbitrary order of
variables we performed a second experiment. The new experiment had a similar setup as the
previous experiment but in addition to generating a random topology of the system, we
generated and used random order of variables. Also, since some order of variables can result
in an impractical number of nodes, we significantly reduce the number of components of the
generated system. In table Tab. 4.9 we can see the results of the new experiment presented
in our paper [97]. We can see that despite a significantly lower number of components the
number of nodes in the diagrams (especially single diagrams) is considerably higher. This
suggests that the default order of variables that we used in the first experiment is a reasonable
and efficient choice for series-parallel systems. Most importantly, the data show that the

series approach is more efficient even in situations when we use a random order of variables.

Tab. 4.9 Average number of nodes in a single MDD and in a series of MDDs depending on the
number of system components (n) in case of homogeneous series-parallel 3, 4, and 5 state MSS

Single MDD Series of MDDs
" 3 4 5 3 4 5
10 61 134 268 40 58 78
20 797 3,495 11,782 227 335 440
30 9,381 84,858 545,158 1,096 1,620 2,194

The results of the experiments offer two interesting conclusions. The first conclusion is that
the individual description of systems states of MSS is considerably more effective than the
description of the entire system. The second conclusion is that the default order of variables
is areasonable choice for decision diagrams representing structure functions of series-

parallel systems.

4.4 System State Frequency Evaluation

The calculation of system state frequency involves multiple challenges that we need to deal
with for it to be efficient. We identified three principal approaches to the calculation, which

we discussed in detail in section 3.3.2. At the end of the section, we presented a general
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algorithm (Alg. 3.7) for the calculation that can be used for BSS as well as MSS. However,
in the case of BSS, there exists an alternative approach that utilizes logarithms to avoid
integer overflow. We assume that our general algorithm should perform better. To confirm
the assumption, we compared the three approaches experimentally.

In the experiment, we generated 200 random BDDs using the min-max approach
(section 4.1.1) for different numbers of variables (n). Subsequently, we computed the system
state frequency using all three approaches. In Tab. 4.10, we can see the average time in
microseconds required to calculate the state frequency using the three approaches. Notice

that we used the GMP multiple precision arithmetic library.

Tab. 4.10 Average time in microseconds required to calculate the state frequency using different

approaches
n Satisfy-count [ps] Satisfy-count-In [ps] Oour [ps]
10 12 14 10
30 1,387 1,823 1,337
60 59,157 69,047 57,107
80 8471,942 191,991 161,950
90 788,309 329,563 287,166
100 21,057,991 470,303 407,762

@ Using the GMP integers

The results of the experiment confirmed our assumption that our algorithm performs better
than the approach that utilizes logarithms. It also confirmed our assumption that even though
it is possible to use the basic approach based on the satisfy-count algorithm —which performs
comparably for n < 63 — the calculations involving multiple precision integers are
considerably slower. Therefore, we conclude that it is better to use our algorithm even for

the special case of BSS.

4.5 Efficient Calculation of Logic Derivatives

4.5.1 Parametrized Procedure

Calculation of logic derivatives is an important step of the reliability analysis process. In
section 3.3.4 we described a possible approach to the calculation that utilizes general
diagram manipulation algorithms and can be used to calculate all types of derivatives.

However, one of the drawbacks of the presented approach is that it requires a separate
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procedure for each type of derivative. As an example, we presented such procedures in
Alg. 3.9 and Alg. 3.10.

The first step in the improvement of the approach is the observation that the examples
— and procedures for the calculation of other types of derivatives as well — have almost
identical structures and, therefore, can be parameterized. Thus, the task is to identify the
parameters. Except for the IDPLD of type 11, the derivatives differ only in the transformation
that they use on the cofactors. Hence, the first pair of parameters are two transformation
functions — v+ and y,ign:. Type Il is the only one that uses other operations than A in the
final apply call. Therefore, the operation also needs to be a parameter. Finally, let us notice
that the change in the value of the variable does not require parametrization since it is the
same for all types of considered derivatives. Considering all the parameters, we present the

pseudocode of the parametrized procedure in Alg. 4.2.

procedure PARAMETRIZEDDPLD(diagram, s, I, iett, Yieft, ©O)
before « CoFACTOR(diagram, i, S)
after — COFACTOR(diagram, i, r)
before’ «— TRANSFORM(before, yiet)
after’ «— TRANSFORM(after, yrignt)
result «— APPLY (before’, after’, ©)
return result
end procedure

Alg. 4.2 Parametrized procedure for the calculation of any (I)DPLD

The algorithm presented in Alg. 4.2 can be used to calculate all types of derivatives by
providing appropriate values of the parameters. In table Tab. 4.11 we present parameters for
the calculation of all derivative types described in section 2.2.2. The notation (= j) follows
the syntax of partial function application [88] used in some programming languages. The
presented example (= j) denotes an anonymous unary function that returns true if and only
if its argument equals the value j. In the special case of IDPLD of type Il we use the identity

function that returns its argument unchanged.

Tab. 4.11 Parameters of the parametrized procedure for the calculation of any (I)DPLD

Derivative Left(t;irflf;‘orm Righ(tytrr;:j)form Apply((zggzration
DPLD =) (=h) (A)
IDPLD Type | =0 <N.ED (A)
IDPLD Type I Aa.a® Aa.a® (<), >
IDPLD Type Il (<N, (=) (=), (<)) (A)

102

b The identity function



DISSERTATION THESIS

4.5.2 Specialized (I)DPLD Calculation Algorithm

4.5.2.1 Introduction of the Algorithm

The procedure presented in Alg. 4.2 is reasonably efficient — the most expensive step is the
final apply call. Therefore, if we can represent the structure function with a diagram of
reasonable size, we can analyze it using logic derivatives. On the one hand, the advantage of
the presented procedure is that it uses a general diagram manipulation algorithm and, thus,
can be used with general diagram manipulation libraries. On the other hand, the calculation
of the derivatives has certain specifics that the general approach cannot exploit. Therefore,
we present an algorithm designed specifically for the calculation of logic derivatives.

Let us consider the transformed cofactors that enter the final apply call. The two
diagrams originate from the same diagram and, therefore, their structure is quite similar.
Moreover, we know exactly how they differ — the difference is only in the edge we used to
“skip” anode representing the variable x;. This allows us to avoid “materializing” the
intermediate results (the cofactors). Instead, we can use only a view of the original diagram,
which uses a modified version of son access — the function GETSON presented in Alg. 4.3.
Consequently, we can skip the calculation of the cofactors and instead use the views (with
appropriate parameters) as the input of the apply call.

Another intermediate result that we would like to avoid is the calculation of the
transformed diagrams. Fortunately, we can use the same approach with aview of the
diagram as we did in the case of the cofactor. If we ignore type 11, we notice that the role of
the transformations is to transform the cofactors into pseudo-logic functions so they can be
merged using apply with A operation. Therefore, the solution is to use a custom operation
for the apply call — let us denote it using the letter A. The operation is a function of two
parameters of the form (3.12). The functions aim to first transform the parameters and then
return true if the values describe the desired change and false otherwise. The A operation
allows us to define the derivative in the following universal way:

e R v 2
Furthermore, from the practical point of view, it is even better if the A operation encodes the
values {true, false} with integers {1,0}. This allows us to write the definition without the if

condition in the following form:
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% = A(f(Si,x)»f(Ti'x))- (4.3)
By combining the above-described ideas, we derived auniversal algorithm for the
calculation of arbitrary (I)DPLD within asingle “apply-like” algorithm (without
intermediate results). The algorithm uses an auxiliary function GETSON (Alg. 4.3) to access
the son of a node. This function performs the “cofactoring” by skipping nodes representing

the “derived by” variable.

procedure GETSON(node, kK, i, value)
son < SoN(node, k)
if ISINTERNAL(S0N) A INDEX(son) = i then
return SoN(son, value)
else
return son
end if
end procedure

Alg. 4.3 Helper function used in the step of the universal DPLD algorithm

The entry point of the algorithm is presented in Alg. 4.4. It handles the special case when we
derive by the variable that is in the root of the diagram and, mainly, it calls the recursive step
of the algorithm. The recursive step has a structure similar to the step of the apply algorithm.
Its pseudocode is presented in Alg. A.5.

Finally, to be able to use the new algorithm, we need to define the A operation
corresponding to all types of considered derivatives. In Tab. 4.12, we present the definitions
for the calculation of all derivative types described in section 2.2.2 in the notation of lambda
calculus. The first part of each expression Aa.Ab. defines two parameters of the function
named a and b. The expression following the last dot defines the value of the function for

given values of parameters.

procedure UNIVERSALDPLD(diagram, i, s, r, A)
oldRoot < RooT(diagram)
if ISINTERNAL (oldRoot) A INDEX(oldRoot) = i then
left — SoN(oldRoot, s)
right «— SoN(oldRoot, r)
else
left «— oldRoot
right — oldRoot
end if
newRoot «— UNIVERSALDPLDSTEP(i, s, I, 4, left, right)
return MDD(newRoot)
end procedure

Alg. 4.4 Entry point of the universal DPLD algorithm
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procedure UNIVERSALDPLDSTEP(i, S, 1, 4, left, right)
if CONTAINS(memo, (left, right)) then
return Lookur(memo, (left, right))
end if
if ISTERMINAL(left) A ISTERMINAL(right) then
node « MAKETERMINALNODE(A(VALUE(left), Value(right)))
else
iieft <— INDEX(left)
iright «<— INDEX(right)
inew <— min(ijeft, iright)
sons «— MAKETUPLE(Minew)
for k = 0 to Minew do
if ileft = inew then
Ihs — GETSON(left, k, i, S)
else
Ihs « left
end if
if iright = inew then
rhs «— GETSON(left, k, i, )
else
rhs < right
end if
sons[k] «— UNIVERSALDPLDSTEP(i, s, I, 4, lhs, rhs)
end for
node < CREATEINTERNALNODE (inew, SONS)
end if
Put(memo, (left, right), node)
return node
end procedure

Alg. 4.5 Recursive step of the universal DPLD algorithm

Notice that the variables j and h are not parameters of the A function — they need to be

defined outside of the function and made available during the evaluation of the expression.

Modern programming languages support this behavior in the form of lambda function

variable captures, closures, function objects with member variables, or similar constructs.

Tab. 4.12 Functions used as the A parameter of our universal algorithm for the calculation of

(NDPLDs
Derivative A-operation
DPLD Aa.Ab.(a=j)A (b =h)
IDPLD Type | Aa.2b.(a =) A(b <))
IDPLD Type Il Aa.Ab.(a < b)
IDPLD Type I Aa.Ab.(a=j) A (b <j)
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4.5.2.2 Experimental Comparison

Our algorithm performs the entire calculation within a single “apply-like” operation in
contrast with the parametrized procedure (Alg. 4.2), which involves multiple diagrams
traversing operations. Therefore, we assume that our algorithm should perform better when
we consider the speed of the derivative calculation. The question is whether the assumption
holds and if so, how big of a speedup our algorithm offers. The answer to the question should
suggest whether it is worth implementing the new algorithm or whether using the simpler
parametrized procedure provides comparable performance.

To answer the question, we compared the parametrized procedure and our approach
presented in [98]. In the experiment, we generated random MDDs using the min-max
approach (section 4.1.1) and measured the average time required to calculate IDPLD of
type 1l and IDPLD of type IIl. We chose these two types because we assumed that the
calculation times of other types are similar to those of type Ill. The average times for the
different numbers of system states (m), number of variables (n) are presented in Tab. 4.13

and Tab. 4.14 with the relative performance (last column) of our algorithm.

Tab. 4.13 Average time in milliseconds required to compute IDPLD of type Il for each variable
using the parametrized procedure and using our algorithm

Parametrized Our our/
m n Node count procedure algorithm Parametrized
[ms] [ms]
2 32 129,448 2,069 1,533 0.7410
3 23 567,533 5,253 3,182 0.6058
4 20 1,641,815 16,399 9,740 0.5939
5 17 1,431,409 11,680 6,866 0.5879

Tab. 4.14 Average time in milliseconds required to compute IDPLD of type Il for each variable
using the parametrized procedure and using our algorithm

Parametrized Our our/

m n Node count procedure algorithm .
Parametrized

[ms] [ms]

2 32 128,322 3,570 1,538 0.43079
3 23 531,698 6,005 2,978 0.49597
4 20 1,591,344 18,540 9,625 0.51917
5 17 1,401,163 13,208 6,874 0.52042
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The experimental comparison shows that our algorithm is roughly 50% faster than the
general parametrized approach. Since the calculation of logic derivatives is one of the
essential steps of reliability and importance analysis, our algorithm can provide a significant

speedup to the process of complex system analysis.
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5 Probabilistic Evaluation of Decision Diagrams

In section 3.3.3 we introduced the calculation of node traversing probability as an essential
task of probabilistic system reliability analysis. Also, we presented practical challenges that
arise in the computation. In this section, we address the challenges, starting with the
description of algorithms for efficient NTP calculation and continuing with the description

of the impact of time-dependent component state probabilities.

5.1 Calculation of Node Traversing Probabilities

Calculation of the NTP of a terminal node following the definition (3.33) would involve
enumeration of all paths leading to a given node, which is computationally infeasible — as
we established in section 3.3.2. Just like with the computation of the state
frequency, computationally feasible algorithms use only a single traversal of the diagram.
The literature recognizes two principal approaches, which are the bottom-up approach and
the top-down approach.

5.1.1 Bottom-Up Approach

The bottom-up approach [10] is the simpler one of the two approaches. It calculates the sum
of NTPs of selected terminal nodes by calculating the probability Prob(.) for each node

using the following relation for internal node A:

miA—l
Prob(V,4) = Z Prob(V, Ay) * Dy, k» (5.1)
k=0
and for terminal node B as:
_ (1.0, VALUE(B) € V
Prob(V, B) = {0.0, otherwise (5.2)

where V is the set of values of selected terminal nodes. The sum of NTPs of all nodes
representing values in V can be subsequently obtained using the following relation:
Z NTP(B) = Prob(V,root). (5.3)
BeV
The recursive nature of the relation (5.1) directly translates to the recursive algorithm
presented in Alg. A.7. A crucial aspect of the algorithm is that it visits each node just once

— which is achieved using the memoization technique (section 3.2.4). Let us note that to
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calculate the Prob(V, A), we first need to calculate Prob(V, 4;) fork = 0,1, ...,m;, — 1.
This approach resembles the standard post-order traversal of a tree structure. Hence, we also

refer to the algorithm as a post-order NTP calculation algorithm.

5.1.2 Top-Down Approach

The second approach is known in the literature as the top-down approach [99]. It calculates
the NTP of each node using the following relation:
NTP(A) = z NTP(B) * Dk, (5.4)
(B,k) € £(A)
where £(A) is a set of pairs of the form (k, B), which represents the set of all edges leading
to node A — B being the source node and k denoting that A is k™ son of node B. The relation

has the following special case for the root node:
NTP(root) = 1.0. (5.5)

Let us notice that the relations (5.2) and (5.4) are similar. The key difference is that in the
case of the top-down approach (5.4), we first need to fully evaluate the probability in a node
before we proceed with the evaluation of its sons — hence the name top-down approach. Also,
let us notice the difference in the notation. In the top-down approach, we use the notation
NTP(A), since the probability calculated in node A agrees with its NTP — this is one of the
possible advantages of this approach. On the other hand, in the bottom-up approach, we
denote the probability calculated in node A using the notation Prob(.,A) since the
probability does not agree with its NTP.

In Alg. A.8 we can see the pseudocode of an algorithm implementing the top-down
approach. This algorithm differs from other diagram-evaluating algorithms — it does not
utilize recursion. The nature of the relation (5.4) requires that the diagram is processed using
the breadth-first search (BFS) traversal, which is also known as level-order traversal in the
context of tree-like structures. Hence, we also refer to the algorithm as a level-order NTP
calculation algorithm.

Implementation of the BFS traversal requires an auxiliary data structure. This
structure stores the nodes to be processed and is initialized in a way that it contains the root
of the diagram. Furthermore, the structure must ensure that we first process all nodes with
index i before we process any node with index i + 1, fori = 1,2, ..., n (assuming the default
order of variables). Therefore, a suitable structure is a priority queue where the index of

a variable associated with a node serves as the priority. Any implementation of the priority
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gueue can be used; however, the increasing nature of priorities allows us to use a monotonic
priority queue [100]. Specifically, we use a straightforward implementation of the bucket
queue in the pseudocode (the stacks variable).

Furthermore, an additional constraint we need to consider is to ensure that each node
Is processed just once. For this purpose, we use the memoization — just like with recursive
algorithms. Also, the resulting state of the memo table serves as the output of the algorithm.
After the algorithm finishes, it contains pairs of the form (4, NTP(A)).

5.1.3 Applications in Reliability Analysis

The two presented algorithms serve as an essential tool for the probabilistic evaluation
described in section 1.5.1. For example, let us consider the calculation of system
availability (1.17) of a system described by a structure function represented by diagram D

using the bottom-up approach:
A%J = CALCULATENTPPoSTSTEP(R0OOT(D),{a | j < a < m}), (5.6)
and the top-down approach.

memo = CALCULATENTPLEVEL(D)
m-—1
A% = Z Lookup(memo, T,,).

a=j

(5.7)

As another example, let us also consider the calculation of system state probability (1.19)

using the bottom-up approach:
Pr{¢(x) = j} = CALCULATENTPPosTSTEP(ROOT(D), {j}), (5.8)
and the top-down approach:

memo = CALCULATENTPLEVEL(D)

Pr{¢(x) = j} = Lookup(memo, T;). (5.9)

Both approaches allow us to calculate the sum of NTPs of terminal nodes as well as
individual NTPs. The difference between the approaches is that the bottom-up approach
outputs the sum directly whilst the top-down approach outputs individual NTPs (stored in
the memo) and the sum needs to be calculated additionally. This means that when we want
to know individual NTPs, we need to run the bottom-up algorithm multiple times. The
question is what the difference between the performance of the two approaches in different

use cases is.
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5.1.4 Experimental Comparison of the Approaches

The description of the two approaches suggests that the bottom-up approach could be faster
(since it is simpler) in situations where we are interested in the sum of NTPs of terminal
nodes e.g., in the calculation of system availability whereas the top-down approach could be
faster in situations where we need to calculate NTPs of individual terminal nodes e.g., in the
calculation of system state probabilities.

To verify the assumptions, we performed an experimental comparison of the two
approaches presented in the paper [101]. In the experiment, we generated random diagrams
using approaches described in section 4.1.1 and section 4.1.2 — properties of the generated
diagrams can be found in Tab. 5.1. For each combination of the parameters, we generated
1,000 random diagrams. The subsequent comparison aimed to compare the approaches in
the following use cases:

e calculation of all system state probabilities (Tab. 5.2);

e calculation of system availability with respect to the state j = 1 (Tab. 5.3).

In addition, we also aimed to evaluate different implementations of the priority queue used
in the top-down algorithm. Specifically, we considered the following implementations:

e heap — de facto standard implementation in standard libraries of programming
languages (top-down heap column) [102];

e bucket queue using an array list [103] of array lists to implement the buckets (top-
down array column);

e Dbucket queue using an array list of linked lists to implement the buckets (top-

down linked column).

The results for the calculation of system state probabilities are presented in Tab. 5.2. The
relative performance of the two algorithms differs for different values of m. For m = 3, we
can see that the bottom-up algorithm performs better even though we needed to run it three
times — one time for each j = 0,1,2. On the other hand, for m = 5 we can see that the top-
down algorithm performs better. The assumption is that it would also perform better for
higher values of m as well, since we only need to run it once regardless of the number of
system states. Another notable observation is that the bucket queue implementations
outperform general implementation (heap) and that the array list implementation of the

buckets is faster in larger diagrams.
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In the second comparison — the calculation of A1 — we considered only the cases
where m = 5 since the calculation of system availability involves only a single invocation
of the algorithm with both approaches regardless of the number of states. Hence, we expected
that the simpler bottom-up algorithm would perform better — as the results of the first
comparison suggested. Results of the comparison are presented in Tab. 5.3. They confirmed
our assumption that a single invocation of the bottom-up algorithm is notably faster than
a single invocation top-down algorithm. Finally, the results also reinforce the observation
that the implementation of the bucket queue that uses an array list for the representation of

the buckets has the best performance.

Tab. 5.1 Properties of diagrams generated for the experiment

Generating Average number
| n m
algorithm of nodes
Series-Parallel 50,000 3 280,365
Series-Parallel 10,000 5 347,204
Min-Max 40 3 13,528,106
Min-Max 20 5 2,220,734

Tab. 5.2 The average time in milliseconds req

uired to calculate all system state probabilities

Top-down Top-down Top-down
n Bottom-up heap array linked
[ms] [ms] [ms]
50,000 3 15 22 20 18
10,000 5 58 47 30 32
40 3 1,621 3,975 1,925 2,840
20 5 573 647 330 430

Tab. 5.3 The average time

in milliseconds required to calcul

ate system availability A>1

Top-down Top-down Top-down
n Bottom-up heap array linked
[ms] [ms] [ms]
10,000 5 13 39 26 28
20 5 167 731 383 498
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The results showed that both algorithms find applications in probabilistic analysis. As we
assumed, the top-down algorithm is preferable in cases where we need to quantify NTPs in
individual nodes. On the other hand, the simpler bottom-up algorithm is more advantageous
in cases where we are only interested in the sum of NTPs. The results also showed that the
top-down algorithm is a suitable use case for bucket-queue, which significantly outperforms

the general implementation.

5.2 Probabilistic Calculations with Time-dependent Probabilities

Until now, in section 3.3.3 and section 5.1, we have only focused on the time-independent
branch of probabilistic analysis. However, component state probabilities usually evolve in
time and, therefore, it is necessary to consider this behavior in the probabilistic analysis to
be able to describe and analyze systems more precisely.

In this section, we describe probabilistic analysis techniques that account for the
component state probabilities no longer being constant numbers but rather expressions
depending on variable t representing time. The expressions typically represent cumulative
distribution functions of some probability distribution — such as exponential or Weibull [1]
— that describe the probability that the component has failed (in the case of BDD) or that the
component is in a state less than j (in the case of MSS) at time t. Consequently, the input of
the probabilistic calculation is a matrix P, ,,, of such expressions. We have identified two
principal approaches to the calculation — the basic and the symbolic approaches. In the rest

of this section, we proceed with the description and comparison of the two approaches.

5.2.1 Basic Approach

The basic approach is the simpler one of the two approaches. The first step carried out before
the evaluation of the diagram is to first evaluate each element of P,, ,,, in time ¢ transforming
it into P, — asimple matrix of floating-point numbers representing component state
probabilities at time t. Then we proceed with the probabilistic calculations using the standard
time-independent algorithms — either the bottom-up or top-down described in section 5.1.
The basic approach requires no modification of the two algorithms and therefore can be used
with existing tools. For example, the authors in [104] utilize this approach in the analysis of
distributed generation power systems. However, a possible disadvantage of this approach is
that it requires repeated evaluation of the diagram for each time point t. Alg. 5.1 illustrates

usage of the basic approach in the evaluation of system availability at multiple time points.
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function EVALUATEBAsIc(diagram, j, timePoints, P)
for v t € timePoints do
Pt «—EVALUATEDISTRIBUTIONS(P, t)
values < {a|j<a<m}
A (t) <+ CALCULATENTPPOSTSTEP(diagram, values, Py)
end for
end function

Alg. 5.1 Basic approach to the calculation of system availability in multiple time points
5.2.2 Symbolic Approach

5.2.2.1 Description of the Symbolic Approach

The second approach utilizes symbolic expressions — hence the name symbolic approach.
Various computer algebra systems such as Matlab, GNU Octave, or wxMaxima allow
manipulation, evaluation, and analysis of expressions represented by trees. Fig. 5.1 shows
a simple example of such a tree. Thus, the main idea of the symbolic approach is to perform
the calculation on expressions rather than probabilities evaluated in time t. Therefore, the
input matrix IP,, ,, contains symbolic expressions representing component state probabilities

dependent on a single variable t representing time.

Fig. 5.1 Expression tree representing an expression that describes the availability of a BSS

Implementation of the symbolic approach requires a suitable representation of the expression
trees. In our library, we chose GiNaC [105] — an open-source C++ library for (besides other
use cases) the creation, manipulation, and evaluation of symbolic expressions. The input of
our implementation is a matrix IP,, ,,, of GiNaC expressions. Since GiNaC overloads standard
arithmetic operators the manipulation of the expressions is very convenient. We can even
reuse the code for the algorithms Alg. A.7 or Alg. A.8 by using techniques of generic

programming — specifically the template mechanism of the C++ language.
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The key difference from the basic approach is that after the last step of NTP
calculation (Alg. A.7 or Alg. A.8), the result is a function in the form of an expression
describing the probability. This expression contains a single variable — symbol t representing
time. Now, to evaluate the probability at time t, we evaluate the expression for a given value
of t. Thus, with the basic approach we evaluate BDD using the NTP calculation algorithm
for each time point whereas with the symbolic approach, we run the NTP calculation
algorithm only once, and then we evaluate the expression for each time point. Alg. 5.2
illustrates the usage of the symbolic approach in the evaluation of system availability at

multiple time points.

function EVALUATESYMBOLIC(diagram, j, timePoints, P)
exprTree < CREATETREE(diagram, P)
for v t € timePoints do
A%l (t) «<EVALUATETREE(exprTree, t)
end for
end function

Alg. 5.2 Symbolic approach to the calculation of system availability in multiple time points

An interesting question is which approach is better if we need to evaluate the probability at
multiple time points. We provide an experimental comparison of the two approaches that

investigates the relative performance difference in section 5.2.3.

5.2.2.2 Symbolic Computation Example

Let us consider a simple storage system analyzed in [106]. The system consists of two units
connected in parallel. Each unit has two hard drives configured as RAID1 and RAIDO
respectively. We will consider the system as a BSS for simplicity, and we will calculate its
reliability (1.27). The topology of the system can be seen in Fig. 5.2. The system has the

following structure function:
P(x) = (x1 V x3) V X3x4. (5.10)
Using the structure function, component reliabilities (1.24), and the inclusion-exclusion

principle we can calculate the system reliability using the following formula:

R(t) = p1(t) + p2(t) + p3(O)pa(t)

(5.11)
— p3(OP4(®) (p1(8) + P2 (1) + 3 (OP4(D)).
By using the bottom-up algorithm, we obtain the following formula:
R(t) = q:()(p2(t) + 2()ps(Opa(®)) + p1 (1), (5.12)
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which, after substituting 1 — p;(t) for each q;(t), agrees with the formula (5.11). Let us
assume the same exponential distributions of component reliabilities as authors in [11] — we
can see the distributions in Tab. 5.4. If we substitute the distributions into expression (5.12)

we can plot the system reliability function which we can see in Fig. 5.3.

Tab. 5.4 Storage system component reliabilities

Component Component reliability p,(t)
t x exp(2535971)

t xexp(624671)

t xexp(476471)

t x exp(44360~1)

AW NP

Fig. 5.2 Reliability block diagram depicting topology of a simple storage system
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0.98 -
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Fig. 5.3 Reliability function of the storage system with the topology depicted in Fig. 5.2

Besides the difference in the approaches described in section 5.2.2.1, the symbolic approach
offers more flexibility such as that it allows for easier interaction with computer algebra
systems — we can serialize the expression and import it into some computer algebra system
for further analysis. For example, we obtained the expression (5.12) by running the bottom-
up algorithm with a matrix containing symbols g;(t) and p;(t). Furthermore, we obtained
the chart in Fig. 5.3 by exporting the expression importing it into the R [107] system, and
using the ggplot [108] library to create the chart.
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5.2.3 Comparison of Symbolic and Basic Approaches

We performed an experimental comparison of the basic approach and symbolic approach to
determine which approach performs better in the evaluation of time-dependent system
reliability at multiple time points. We performed three experiments using our TeDDy library

which implements both approaches.

5.2.3.1 Storage System Example

The first comparison we performed was on the storage system presented in section 5.2.3.1.
In the experiment, we evaluated system reliability using component reliabilities presented in
Tab. 5.4 at 10; 100; 1,000; and 10,000 selected time points. Tab. 5.5 shows the result of the
comparison. The durations in the table were obtained as average from 100 replications of the
computation. Column Basic computation contains the total time in nanoseconds required to
compute system reliability at the given number of time points. Column Symbolic init
contains the time needed to create the expression tree and column Symbolic computation the
total time in nanoseconds required to compute system reliability at the given number of time
points. The results clearly show that the basic approach is in the orders of magnitude faster

than the symbolic approach even when we need to evaluate a higher number of time points.

Tab. 5.5 Comparison of the basic and symbolic approach in the computation of system reliability of
a four-component storage system

Time points Bas!c Syr_nbolic Symboli_c
computation [ns] init [ns] computation
10 956 9,252 267,071
100 7,258 9,454 2,607,722
1,000 69,447 9,949 25,945,398
10,000 692,683 13,456 257,718,581

5.2.3.2 Random Series-parallel Systems

The second comparison aims to compare the two approaches in the analysis of series-parallel
systems with different topologies. For this purpose, we generated random series-parallel
systems with 10, 20, 30, and 40 components using the approach described in section 4.1.2.
For each such system, we computed system reliability in 10 time points. Since the systems
are randomly generated, we assume exponential distributions of component reliabilities with

randomly generated rate parameters. Table. 3 contains the results of the comparison. The
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durations in the table were obtained for each variable count n as average from 10 randomly
generated system topologies and 10 replications for each topology. In addition to the
previously described columns the table also contains |BDD| and |Tree| columns which
contain the average number of nodes in BDD and the expression trees respectively.

The results confirm the results of the first experiment that the basic approach is
significantly faster. Moreover, the results also indicate that the complexity of the expression
tree increases dramatically with increasing number of variables. This suggests that the
symbolic approach is not suitable for a system with a higher number of components while

the basic approach seems to scale very well if the size of the BDD stays reasonable.

Tab. 5.6 Comparison of the basic and symbolic approach in the computation of system reliability of
randomly generated series-parallel systems

n IBDD| Tree| Basic C(ELZ[])utation SymkErc])li]c init com?oirtnat:ioolr[ns]
10 12 599 1,739 26,187 3,823,367
20 22 15,218 3,606 51,791 101,280,004
30 32 546,208 6,020 82,222 3,595,178,608
40 42 11,494,828 7,401 103,151 72,100,562,769

5.2.3.3 PLA Benchmark Circuits

The two experiments that we described so far used series-parallel systems. Therefore, in the
last experiment, we decided to analyze systems of different nature — PLA circuits from the
IWLS’93 benchmark [93]. Reliability analysis of logic circuits is specific since the structure
function contains variables representing inputs of the circuits as well as variables
representing unreliable logic gates [14]. The analysis aims only at the variables representing
the logic gates fixing the input variables for all possible inputs. Hence, the size of the BDD
is relatively small despite a higher number of variables. In this experiment, we also assumed
exponential distributions of component reliabilities. Just like in the first experiment, we
evaluated system reliability at 10; 100; 1,000; and 10,000 time points.

Tab. 5.7 presents the results of the experiment. Additionally the PLA file column
contain the name of the benchmark, and the n column contains the number of variables
representing the logic gates — the number of variables in the analyzed BDD. The results show
that, again, the basic approach performed better than the symbolic approach. However, the

relative difference between the two approaches is much smaller.
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Tab. 5.7 Comparison of the basic and symbolic approach in the computation of system reliability of

PLA circuits

PLA file n Time points compigi:gn [ns] SymkErc])li]c init cosr%l%zgaltli%n
conl 11 10 1,905 986 36,352
conl 11 100 18,002 1,078 357,491
conl 11 1,000 178,788 1,275 3,566,846
conl 11 10,000 1,791,139 2,017 35,643,194
xor5 17 10 2,210 698 23,954
Xor5 17 100 21,317 763 237,646
Xor5 17 1,000 212,002 874 2,384,453
Xor5 17 10,000 2,120,591 1,391 23,797,647
rd53 35 10 3,860 2,158 74,064
rd53 35 100 37,498 2,338 731,114
rd53 35 1,000 374,347 2,709 7,277,917
rd53 35 10,000 3,736,264 4,274 72,870,141
squars 40 10 4,469 8,019 220,688
squarb 40 100 43,178 8,306 2,189,516
squarb 40 1,000 430,617 9,086 21,934,328
squars 40 10,000 4,297,874 14,722 | 218,934,519
sqrt8 44 10 4,864 2,000 67,313
sqrt8 44 100 47,538 2,220 661,964
sqrt8 44 1,000 473,333 2,555 6,612,181
sqrt8 44 10,000 4,760,873 4,303 66,284,840

Each of the above-described experiments showed that the basic approach performs much
better than the symbolic approach if we consider the speed of the evaluation of NTP.
Although the results are specific to our implementation — our library TeDDy and GiNaC
library for the manipulation of expressions — the relative difference between the two
approaches is considerable and therefore is unlikely to change significantly for other
implementations. However, the symbolic approach that we presented is still a valid and
useful tool for time-dependent reliability analysis because of the mentioned possibilities to

further manipulate and analyze the expression.
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Conclusion

This thesis dealt with the application of decision diagrams in the reliability analysis of
complex systems. It provided a comprehensive overview of the steps of the reliability
analysis process with a focus on the algorithms operating on decision diagrams representing
structure functions. Several new algorithms were introduced, and various improvements and
generalizations of existing algorithms were provided. The contributions of the thesis are the

results of solving the following research problems:

e analysis of existing approaches and algorithms utilized in the representation of
the structure function by decision diagram and their subsequent analysis:
v Chapter 1 introduced general approaches used in reliability analysis,
v' Chapter 2 described discrete functions as the mathematical
foundation of the structure function (section 2.1) and means of their
analysis (section 2.2) and representation (section 2.4);
v' finally, Chapter 3 dealt with decision diagrams and their applications
in reliability analysis (section 3.3).
e implementation of a performant and robust software library for the creation and
manipulation of decision diagrams:
v Chapter 3 presented essential aspects of a software library for the
creation and manipulation of decision diagrams (section 3.2);
v" all the described algorithms and techniques are implemented in our
open-source library TeDDy [75].
e evaluation, adjustment, and improvement of existing algorithms for the creation
and manipulation of decision diagrams;
v Chapter 4 provided an experimental comparison of different ways of
the order of evaluation of the apply algorithm (section 4.2);
v' Chapter 4 evaluated the per-state representation of series-parallel
systems (section 4.3);
v Chapter 3 introduced an algorithm for the calculation of system state
frequencies (section 3.3.2) and Chapter 4 showed that it is preferable
also in the special case of BSS (section 4.4);
e creation of new decision diagram algorithms and methods specialized for the use
case of topological and probabilistic reliability analysis:
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v Chapter 3 presented a generalized version of the apply algorithm
(section 3.2.3) for the dynamic creation of decision diagrams and
Chapter 4 showed that the algorithm is suitable for practical use cases
(section 4.2.2)

v' Chapter 4 introduced anew universal algorithm for the efficient

calculation of arbitrary logic derivatives (section 4.5).

In conclusion, the major contribution of this thesis is the description of the optimization of
the creation and manipulation of decision diagrams for the reliability analysis of large
complex systems. The description involves existing techniques and algorithms as well as
new algorithms proposed in this thesis. Finally, a notable practical contribution is the open-

source software library specialized in reliability analysis with decision diagrams.
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Resume

1 Predmet vyskumu

Analyza spol'ahlivosti je dolezitou sticastou zivotného cyklu takmer vSetkych systémov. Je
dolezita uz vo faze navrhu systémov, kedy ndm pomaha zostrojit’ systém tak, aby dokazal
plnit pozadovani funkcionalitu dostato¢ne dlhy c¢as s pozadovanou spolahlivostou.
Nemenej dolezita je aj pri planovani udrzby systémov alebo pri identifikacii komponentov
kritickych pre fungovanie systému.

Prvym krokom analyzy je identifikacia podtu stavov systému. Dal§im krokom je
vytvorenie matematického popisu systému. V tejto praci sa zameriavame na popis systému
tzv. $truktirnou funkciou [2]. Struktarna funkcia priradi danému stavu komponentov stav
systému — popisuje zavislost’ stavu systému na stave jeho komponentov. Vo v§eobecnosti je
Struktarna funkcia diskrétnou funkciou. Jej konkrétna forma zavisi od poctu stavov systému
a od poctu stavov komponentov systému.

Skiimanim vlastnosti $trukturnej funkcie ziskavame informacie o vlastnostiach
skimaného systému. Jednou z vlastnosti, ktoré Struktiirna funkcia prebera je komplexnost’
systému. T4 mdze byt’ spésobena napriklad velkych poctom komponentov systému, r6znou
povahou komponentov alebo komplikovanymi vzt'ahmi medzi komponentami. Obzvlast pri
velkom pocte komponentov je preto potrebné Strukturnu funkciu efektivne reprezentovat’.
Vhodna reprezentacia musi zvladnut’ popisat’ aj rozsiahle systémy a musi tiez umoZznovat’
efektivne spracovanie v pocitaci.

Rozhodovaci diagram [11], [12] je $truktura, ktora spiiia obe uvedené vlastnosti. Ide
0 acyklicky graf, ktory bol navrhnuty na efektivnu reprezentaciu diskrétnych funkcii.
Rozhodovacie diagramy sa vo vSeobecnosti povazuju za velmi efektivny spdsob
reprezentacie Strukturnej funkcie. Povaha komplexnych systémov a neustaly narast zloZitosti
vSak vytvaraju tlak na neustdle zlepSovanie existujicich technik a navrhovanie novych
pristupov. Volne dostupné softvérové nastroje V sucasnosti poskytuji algoritmy na
vSeobecnu pracu s rozhodovacimi diagramami. Algoritmy na analyzu spolahlivosti st v§ak
¢asto implementované iba pre konkrétny pripad pouZitia alebo nie su vol'ne dostupné.

Hlavnym cielom tejto prace je preto optimalizdicia aplikdacie rozhodovacich
diagramov pri analyze spolahlivosti zlozZitych systémov, Z coho vyplyvaji nasledujuce

vyskumné témy:
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e analyza existujucich pristupov a algoritmov vyuzivanych pri reprezentdcii
Struktarnej funkcie pomocou rozhodovacieho diagramu a pri naslednej analyze;

e implementacia vykonnej arobustnej softvérovej kniznice na tvorbu
a manipuldciu s rozhodovacimi diagramami zameranej na vyuzitie diagramov
Vv analyze spolahlivosti;

e navrh, Uprava a zlepSenie existujucich algoritmov na tvorbu a manipuldciu
s rozhodovacimi diagramami;

e vytvorenie novych algoritmov a metdd zalozenych na vyuziti rozhodovacich

diagramov $pecializovanych na analyzu spolahlivosti.

2 Analyza spol'ahlivosti

2.1 Pocet stavov systému

Pred zaliatkom analyzy systému je potrebné identifikovat pocet stavov systému.
Najjednoduchsi pristup je popisovat’ iba dva stavy systému — systém funguje a systém zlyhal
— ktoré popisujeme Cislami 1 a0 vtomto poradi. Takto popisany systém nazyvame
dvojstavovy systém (BSS z angl. ,,Binary-State System*) [1], [2]. Pre systémy, ktoré st zo
svojej povahy dvojstavové je takyto pristup postacujuci. Prikladom takéhoto systému je
logicky obvod. Rovnako je vhodny aj pre systémy, v ktorych moze aj vel'mi malé zhorSenie
stavu spdsobit’ Skody na technike alebo ohrozit’ zdravie I'udi. V takomto pripade moéze ist
napriklad o riadiaci systém elektrarne.

Mnohé systémy vSak dokaZzu plnit’ svoju ulohu aj po zhorSeni ich stavu. Prikladom
moze byt transportna siet, ktora funguje s menSou prenosovou kapacitou. Takéto systémy
nazyvame viacstavové (MSS z angl. ,,Multi-State System®) [3]. Stavy takychto systémov
popisujeme Cislami O pre stav, v ktorom systém nefunguje aZ po ¢islo m — 1 pre stav,
Vv ktorom systém funguje bez obmedzeni, kde m je celkovy pocet stavov. Pri tomto type
systémov d’alej rozliSujeme homogénne systémy, v ktorych je pocet stavov vsetkych
komponentov a pocet stavov systému rovnaky a nehomogénne systémy, v ktorych moézu
mat’ r6zne komponenty a cely systém rozdielny pocet stavov. Tato vlastnost’ je typicka pre
systémy zlozené z komponentov réznej povahy — napr. z technickych zariadeni a l'udi.

Vyhodou BSS je ich jednoduchost’ a stym spojend jednoduchost’ modelov, ktoré ich
popisuji — ¢i uz zpohladu velkosti modelov alebo z pohladu vypoctovej zlozitosti
algoritmov. Vyhodou je tiez dostupnost’ vac¢Siecho mnozstva algoritmov a nastrojov. Na
druhej strane, ich nevyhodou moze byt az prilisné zjednodusenie Vv pripade popisu systémov,
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ktoré nie su vo svojej povahe dvojstavové. V takomto pripade je pre ziskanie presnejSich
vysledkov potrebné popisovat’ takéto systémy ako viacstavové — avSak za cenu zlozitejSieho

modelu a vacsej vypoctovej zlozitosti.
2.2 Strukturna funkcia

Struktirna funkcia je zobrazenie, ktoré kazdému stavu komponentov priradi prislichajuci
stav systému. Vo vSeobecnosti ide 0 diskrétnu funkciu, ktora ma v pripade nehomogénneho

MSS nasledovnt podobu [5]:

(x4, %9, ., %) = p(x):{0,1,...,m; —1} x ... x{0,1,...,m,, — 1} {1}
-{0,1,..,m— 1},
kde n je pocet komponentov systému, x; popisuje stav i-teho komponentuprei = 1,2, ..., n;
m je poCet stavov systému, m; je pocet stavov i-teho komponentu a x = (xq, x5, ..., X,) j€
stavovy vektor, ktory obsahuje stav vSetkych komponentov.
Definicia {1} popisuje najvSeobecnejsi pripad a suhlasi s definiciou celoCiselnej
funkcie [10]. V Specialnom pripade homogénneho MSS, kedy platim; = m; = mpre i,j =
1,2, ...,n, ma nasledovnt, jednoduchsiu, podobu [5]:

d(xq, %0, 0 x) = d(x):{0,1,...,m —-1}"* - {0,1,...,m — 1}, {2}
ktora je zhodna s definiciou viachodnotovej logickej funkcie [10]. Ak navyse plati, ze m =

2, Struktarna funkcia popisuje BSS a ma nasledovnu formu [2]:

P (x1, X, o0, xn) = $(x):{0,1}" - {0,1}, {3}
ktora je zhodna s definiciou booleovskej funkcie [8].

Z definicii {1}, {2} a {3} je zrejmé, Ze definicia {3} predstavuje najvSeobecnejsi
pripad a definicie {1} a {2} predstavuju iba Specialne pripady. V d’alSom popise budeme
preto uvazovat’ Struktirnu funkciu vo forme {3}.

2.3 Logické derivacie

Skumanim vlastnosti Struktirnej funkcie ziskavame informacie 0 systéme, ktory popisuje.
Logicky diferencialny pocet [10], [109] — podobne ako klasicky diferencialny pocet —
umoznuje skimat’ dynamické vlastnosti diskrétnych funkcii. DoéleZitym néstrojom pre
analyzu spolahlivosti su tzv. logické derivacie, ktoré popisuju, ako sa meni hodnota funkcie
pri konkrétnej zmene hodnoty premenne;.

Zéakladnou derivaciou je smerova logicka derivacia celo¢iselnej funkcie f(x) podla

premennej x;, ktora definujeme nasledovnym spdsobom [10]:
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0f G > h) {r ak f(s;,x) = jaf(n,x) = h “}

dx;(s »r) o, inak,

kdes,r,j,h € {0,1,..,m — 1}, s # raj # h. Notécia f(s;, x) predstavuje kofaktor funkcie
f podl'a premennej x; s hodnotou s. Kofaktor je funkcia n — 1 premennych, ktort ziskame
zafixovanim hodnoty premennej x; na hodnotu s. Podobne je derivacia {4} funkcia n — 1
premennych, ktora nadobtda hodnotu 1 iba v bodoch, v ktorych zmena hodnoty premenne;j
x; Z hodnoty s na hodnotu r sposobi zmenu hodnoty funkcie f z hodnoty j na hodnotu h.

Derivacia {4} popisuje jednu Specifickii zmenu hodnoty funkcie. Pri celociselnej
funkcii vSak existuje vzhl'adom na pripustné hodnoty s,7,j,h relativne velky pocet
konkrétnych derivécii, ktoré je mozné vyhodnotit. Ked'Ze jednotlivé derivacie popisuju iba
zlomok vSetkych situacii, ich pouzitie by bolo pomerne nepraktické. Pre ziskanie
obsiahlejSieho pohl'adu na spravanie funkcie preto pouzivame integrované smerové logické

derivacie [30]. Literatura popisuje tri typy tychto derivacii a to:

e typ | definovany nasledovne:

of (j b X) =jaf(sox) <j
PG (1 a0 =jaf (o) <) )

ax;(s »r) 0, inak,

e typ Il definovany nasledovne:

af(y) {1, ak f (s, x) > f(1;, %) ©
dax;(s > 1) |0, inak,
e atyp Il definovany nasledovne:
0f (hsj = hey) _ {1, ak f(s;, %) = ja f(r;,x) < j N
0x;(s > 1) 0, inak.

Definicie {5}, {6} a {7} sa v ramci jednotlivych typov mézu li§it' napr. smerom zmeny
hodnoty funkcie. Povaha zmeny sa vsak pre konkrétny typ nemeni.

Zmena hodnoty premennej anaslednda zmena hodnoty Struktirnej funkcie
zodpovedaju zmene stavu komponentu a naslednej zmene stavu systému. Logické derivacia
preto predstavuju vel'mi silny ndstroj pre skimanie vplyvu komponentov na stav systému.
V nasledujtcich sekciach preto popiSeme vyuzitie derivacii pri vypocte rdznych

ukazovatel'ov spolahlivosti.
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2.4 Topologicka analyza

StruktGrna funkcia popisuje topologiu systému, na zaklade ktorej dokdZeme vykonat
topologickt analyzu. Zakladnym topologickym ukazovatel'om je relativna frekvencia stavov

systému vzhl'adom na stav j definovana nasledovne [110]:

Fr¥ = TD(¢(x) = ), {8}
kde ¢(x) je Strukturna funkcia, j € {0,1, ..., m — 1} a notacia TD(.) oznacuje tzv. hustotu
pravdivosti argumentu — relativny pocet vstupnych vektorov, pre ktoré argument (funkcia
s booleovskym vystupom) nadobuda hodnotu 1. Frekvencia stavov systému tak popisuje
relativny pocet moznych stavov komponentov, pre ktoré je systém v stave j alebo v stave
lepSom ako j. Frekvenciu stavov systému mézeme pouzit’ na jednoduché porovnanie dvoch
roznych konfiguracii systému napriklad vo faze navrhu systému.

Frekvencia stavov systému popisuje cely systém jednym c¢islom a nehovori nic¢
0 vplyve jednotlivych komponentov systému. Takuto informaciu poskytuje jeden z tzv.
ukazovatel'ov dblezitosti [7] zvany $truktirna ddlezitost. Struktarnu ddlezitost’ (S| z angl.
Lotructural  Importance®) je mozné definovat’ viacerymi spdsobmi. Z pohladu
vyhodnocovania je vel'mi vyhodna definicia pomocou logickej derivacie [20]:

RIS

dxi(s = 1)

SI; = TD( {9}

SI; popisuje relativny pocet situacii kedy zmena stavu i-teho komponentu zo stavu s do stavu
r spOsobi zmenu stavu systému popisant derivaciou. V definicii {9} sme pouzili
integrovana smerovu logicka derivaciu typu Il {7}. Pre vypocet SI je vSak mozné pouzit’ aj

ostatné typy derivacii. Presny vyznam SI potom zavisi od pouzitej derivacie.
2.5 Pravdepodobnostna analyza

Nevyhodou topologickej analyzy je, Zze predpoklada rovnakil pravdepodobnost’ stavov
komponentov. Stavy komponentov sa vSak vpraxi vyskytuji s réznymi
pravdepodobnost’ami. Pre ziskanie presnejSich charakteristik systému je preto potrebné
vziat’ do iivahy aj pravdepodobnosti stavov komponentov. Dalsou déleZitou vlastnostou je,
ze pravdepodobnost’ stavov komponentov sa v ¢ase meni. Preto rozliSuje ¢asovo zavislé
a ¢asovo nezavislé pravdepodobnostné charakteristiky.

Casovo nezavislé pravdepodobnosti stavov komponentov oznacujeme nasledovne:

Dix = Pr{x; =k}, {10}
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kde i=1,2,..,n a k=0,1,..,m; — 1. Notacia {10} oznacuje pravdepodobnost, zZe
komponent ije vstave k. Casovo zavislé pravdepodobnosti stavov komponentov

oznacujeme podobne:

pis(t) = Pri{Z;(¢t) = s}, {11}
kde s =0,1,...m; — 1, premenna t reprezentuje ¢as a funkcia Z;(t) popisuje stav i-teho
komponentu v Case t.

Zékladnou pravdepodobnostnou charakteristikou systému je dostupnost’ vzhl'adom

na stav systému j. Casovo nezavisli dostupnost’ MSS definujeme nasledovne [3]:

A¥ (p) = Pr{p(x) = j}, {12}

kde je€{1,2,...m—1} ap je matica pravdepodobnosti stavov komponentov.
Dostupnost’ {12} zodpoveda pravdepodobnosti, ze systém je v stave j alebo v lepSom stave.
Komplementarnym ukazovatel'om k dostupnosti je nedostupnost’ systému vzh’'adom na stav

j definovana nasledovne [3]:

U* (p) = Pri¢(x) <j}, {13}

ktora zodpoveda pravdepodobnosti, Ze systém je v stave horSom ako j.

Podobne ako frekvencia stavov systému {8} popisuju dostupnost’ a nedostupnost’
celého systému jednou pravdepodobnost'ou. Ked'Ze vSak m6zu byt rézne komponenty rdzne
spol'ahlivé, nepontkaju zZiadnu informdaciou o doleZitosti jednotlivych komponentov. Takuto
informaciou poskytuji rozne ukazovatele dolezitosti. Jednym zbeZne pouZivanych
ukazovatel'ov je Birnbaumova dolezitost’ (BI z angl. ,,Birnbaum importance*). Podobne ako
pri SI {9} je z praktického hl'adiska vyhodna definicia pomocou logickej derivacie [20]:
BIZ, = Pr {aqb(hz" ~he) 1}. {14}

bs oxi(s >s—1)

BI7; udava pravdepodobnost’, Ze zhorSenie stavu i-teho komponentu zo stavu s to stavu s —
1 spdsobi zmenu stavu systému popisovant derivaciou. Notacia . < 1 zodpoveda jav kedy
lavy argument nadobuda hodnotu 1. V definicii {14} sme pouzili integrovani smerova
logicku derivaciu typu Il {7}. Pre vypocet BI je v§ak mozné pouzit’ aj ostatné typy derivacii.
Presny vyznam BI potom zavisi od pouZitej derivacie.

Definicie casovo zavislych verzii vysSSie popisanych pravdepodobnostnych
ukazovatel'ov st podobné ich ¢asovo nezavislym ekvivalentom. Zasadnym rozdielom je
vSak argument, ktory uz nie je jednoduchd matica pravdepodobnosti, ale je nim vektor

stavovych funkecii.
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Casovo zavisld dostupnost’ systému vzhl'adom na stav systému j je definovana

nasledovne [3]:
A () = Pr{p(Z(1)) = j}, {15}
kde Z(t) = (Z,(), Z5(t), ., Zp(t)) je vektor stavovych funkcii jednotlivych

komponentov.

3 Rozhodovacie diagramy

Pre zostrojenie a vyhodnotenie Struktarnej funkcie je potrebné vybrat vhodny sposob jej
reprezentacie. Reprezentdcia musi umoznit efektivne spracovanie v pocitaci a zaroven
umoznit’ efektivne reprezentovat’ aj rozsiahlejSie funkcie popisujiice komplexné systémy.
Rozhodovaci diagram je grafova Struktura navrhnutd na reprezentaciu diskrétnych funkcii,
ktora spiia obe uvedené vlastnosti. Binarny rozhodovaci diagram [11] (BDD z angl. ,,Binary
Decision Diagram®) je najjednoduchs$i typ rozhodovacieho diagramu navrhnuty na
reprezentaciu booleovskych funkcii. Jeho zovSeobecnenim je viachodnotovy rozhodovaci
diagram [12] (MDD z angl. ,,Multi-valued Decision Diagram*) navrhnuty na reprezentaciu
viachodnotovych logickych funkcii {2} a celoCiselnych funkcii {1}. Vo zvysku textu

budeme uvazovat najvSeobecnejsi pripad MDD, ktory reprezentuje celociselnu funkciu.

3.1 Struktura diagramu

MDD je orientovany acyklicky graf, ktory sa sklada z vnutornych vrcholov, ktoré
reprezentuju premenné a koncovych vrcholov, ktoré reprezentuji hodnoty funkcie. VVrcholy
diagramu st uloZené na urovniach. Jedna uroven obsahuje vnutorné vrcholy reprezentujuce
rovnakd premennu, Svynimkou poslednej urovne, ktord obsahuje koncové vrcholy.
Vnutorny vrchol reprezentujici premennu x; md m; vystupnych hran, ktoré vedu do
vrcholov na nizSich Urovniach. Koncovy vrchol nema Zziadne vystupné hrany a pocet
koncovych vrcholov je najviac m. Ukazku vSetkych $truktiry r6znych typov MDD moéZeme

vidiet na Obr. 1.

3.2 Tvorba diagramov

KIacovou vlastnostou MDD je unikatnost’ a zdielanie vrcholov. Tieto vlastnosti si
prakticky zabezpecené udrziavanim tzv. tabulky unikatnych vrcholov — pred vytvorenim

nového vrcholu sa najprv kontroluje, ¢i uz pozadovany vrchol neexistuje v tabulke.

129



UNIVERSITY OF ZILINA

Zakladom vytvorenia MDD je tzv. priama tvorba — MDD reprezentujici funkciu
jednej premennej alebo konstantni funkciu moézeme vytvorit jednoducho bez potreby
sofistikovanejSieho algoritmu. MDD reprezentujuci komplikovanejSie funkcie mézeme
nasledne ziskat’ spajanim priamo vytvorenych diagramov pomocou binarnych operacii (A,V
,@®,, min, max, ...). Takyto pristup nazyvame dynamickd tvorba MDD. Na spajanie
pouzivame algoritmus apply [11], ktorého vstupom su dva MDD a binarna operacia
a vystupom je novy MDD, ktory reprezentuje novia funkciu ziskant spojenim vstupnych
funkcii binarnou operaciou. Opakovanym pouzitim algoritmu apply tak mézeme vytvorit
MDD reprezentujuci l'ubovolnt funkciu.

Pre Gplnost’ spomenieme d’alsi mozny pristup k tvorbe MDD zvany statickd tvorba,
ktora spociva v transformacii pravdivostnej tabul’ky na MDD [80]. Tento pristup je vhodny

pre tvorbu mensich MDD, ktoré moézu sluzit’ ako vstup do procesu dynamickej tvorby.

Obr. 1 VIavo: BDD reprezentujici booleovsku funkciu, uprostred: MDD reprezentujtci
viachodnotovu logicku funkciu, vpravo: MDD reprezentujuci celociselnu funkciu

3.3 Zefektivnenie tvorby diagramov

Vytvorenie MDD reprezentujiceho Struktirnu funkciu je nutny krok k naslednej analyze
systému. V pripade komplexnych systémov méze byt Struktirna funkcia rozsiahla
a komplikovana, preto je potrebné vytvorenie diagramu vykonat' ¢o najefektivnejsie. Cast’

prace sa preto venuje zefektivneniu a zjednoduSeniu tohto procesu.

3.3.1 Zovseobecnenie spajania diagramov

Algoritmus apply mézeme povazovat’ za binarnu operaciu. Mnohé funkcie/podsystémy,
ktoré chceme popisovat’ su vSak d-arne (kde d € N). Prikladom mo6ze byt trojvstupové

logické hradlo (hradlo AND na Obr. 2) alebo paralelny (pod)systém (Obr. 2). Bezne
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pouzivanym rieSenim je viacnasobné pouzitie binarneho algoritmu apply. V pripade
logického obvodu na Obr. 2 by tak volanie apply mohlo vyzerat’ nasledovne:
APPLY(APPLY(APPLY (X, X5,A), X3,A), X4,V),
kde zapis X; predstavuje MDD reprezentujuci funkciu jednej premennej x;. Ovela
prirodzenejsie by vSak bolo volanie apply nasledovnym spdsobom:
AprpLY(Apply (X4, X3, X3,/A), X4,V).
Vo zvyraznenej Casti vyrazu mozeme vidiet pomyselnt ternarnu verziu apply.

V praci sme preto navrhli zovSeobecneni verziu algoritmu apply, ktord sme
pomenovali extended apply. Podobne ako zakladna verzia algoritmu je tento postaveny na
vztahu, ktory popisuje vnatorny vrchol diagramu pomocou Shannonovej expanzie [49].
Nami zovSeobecneny vzt'ah ma nasledovnu podobu:

m;—1

Oa (i for s f)® = ) (1 & K % (Ou (fu for o f) (i), {16}

k=0
kde vyraz {x; « k} predstavuje tzv. logicky bikondicional, ktory nadobuda hodnotu 1 prave
vtedy a len vtedy, ak premenna x; nadobuda hodnotu k a O, je d-arna asociativna operacia.
Cleny suétu sa daju stotoznit’ s vystupnymi hranami vnutorného vrcholu acely vyraz

s vnutornym vrcholom MDD.

X ]
Xy —1
2 X]_
Xz —]
X2
f(x)
X4
X3

Obr. 2 Priklady systémov, na popis ktorych je vhodnejsie pouzit’ ternarne funkcie; vliavo
jednoduchy logicky obvod; vpravo paralelny systém s tromi komponentami

Navrhnuty algoritmus sme experimentadlne porovnali so zékladnou verziou [95].
V experimente sme vytvarali MDD reprezentujuce nahodné d-cestné stromy pomocou
nasho algoritmu extended apply srbéznou aritou. Vysledky porovnania moézem vidiet
v Tab. 1.

Vysledky porovnania ukazuju, Ze zdkladnd verzia dosahuje lepSie vysledky v
porovnani s rozs§irenymi verziami — a teda pouzitim rozsireného algoritmu nedosahujeme

vyrazné zrychlenie. Na druhej strane, verzia s aritou 3 sa ukazala byt rovnako rychla a
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efektivnejSia z hl'adiska poctu krokov algoritmu, ¢o naznacuje, Ze mozu existovat’ pripady

pouzitia, v ktorych je rozsirena verzia vhodnejsia.

Tab. 1 Priemerny ¢as v milisekundach potrebny na vytvorenie MDD z vyrazového stromu
popisujuceho sériovo-paralelny systém zloZzeny z n,,,,, Komponentov

d

ftmax 2 3 4 5
20 000 79 78 94 113

40 000 177 176 209 252

60 000 280 278 333 401

80 000 384 383 457 550

100 000 500 495 592 712

3.3.2 Poradie spajania diagramov

Pri tvorbe diagramov je ¢asto potrebné spojit’ radovo desiatky az stovky MDD rovnakou
operaciou (. Jedno pouzitie algoritmu extenden apply pri takto vysokom pocte MDD nie je
vhodné kvoli velkej vypoctovej narocnosti analyzovanej v texte prace. RieSenim je preto
viacnasobné pouzitie ¢i uz zakladnej alebo rozsirenej verzie apply. Kvoli asociativite
operacie © je mozné toto spojenie vykonat’ mnohymi spdsobmi. V praci sme analyzovali

pristup zvany left-fold®, v ktorom diagramy spijame sekvenéne zl'ava doprava:

((t0; © D) © D;) © D,) © Ds

a pristup tree-fold, v ktorom diagramy spajame hierarchicky postupne po dvojiciach:
(D, ©D;) © (D3 © Dy)) O Ds,

kde notacia D; predstavuje poc¢iato¢ny MDD.

V praci sme skumali, ¢i a ako poradie spajania ovplyviiuje rychlost’ vytvorenia
diagramu [111], [112]. V Tab. 2 moézeme vidiet' vysledky jedného z experimentalnych
porovnani, v ktorom sme vytvarali BDD reprezentujlice binarne s¢itacky popisané PLA
stibormi [91].

Vysledky experimentu ukdazali, Ze v konkrétnom pripade pouZitého benchmakru

dokdze poradie spdjania vyrazne ovplyvnit’ rychlost’ vytvorenia vysledného diagramu.

% Nézvy left-fold a tree-fold pochadzaju z programovacich jazykov, kde sa funkcie s danymi menami
pouzivaju na spracovanie tdajovych Struktar [88]
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V tomto konkrétnom pripade sa pristup tree-fold (ktory je menej intuitivny) ukazal ako
vyrazne rychlejsi. Je vSak dolezité spomenut, ze v d’al§i experimentoch s inymi datami sa,
naopak, pristup left-fold ukazal ako rychlejsi. Z vysledkov naSich experimentov preto

usudzujeme, zZe pre nastroje na pracu s diagramami je vyhodné implementovat’ oba pristupy.

Tab. 2 Priemerny ¢as v milisekundach potrebny na vytvorenie BDD reprezentujucich vystupy
binarnej s¢itacky

Potet bitov Podet spajanych Left fold [ms] Tree fold [ms]
séitacky diagramov
10-adder-col 10191 163 71
11-adder-col 20 427 477 180
12-adder-col 40 911 1828 448
13-adder-col 81 867 5342 1084
14-adder-col 163 783 16 579 2753

4 Aplikacia rozhodovacich diagramov v analyze spol'ahlivosti

Vysledky, ktoré sme popisali v predchadzajiucej sekcii je mozné aplikovat’ na tvorbu
diagramov vo vSeobecnosti. Praca je vSak zamerand na Specifické vyuZitie diagramov

Vv analyze spolahlivosti. Vo zvySku textu sa preto venujeme tejto problematike.

4.1 Reprezentacia Strukturnej funkcie

Priméarne apre dalSiu analyzu nevyhnutné vyuZzitie diagramov v analyze spolahlivosti
spociva v reprezentacii Struktirnej funkcie. Zakladny a intuitivny pristup spociva
Vv reprezentacii celej Strukturnej funkcie ¢ (x) jednym MDD. V pripade MSS vsak existuje
aj alternativny pristup, kedy kazdy stav systému popiseme individualne funkciami ¢(x) >
1,d(x) = 2,...¢0(x) = m — 1 [86]. Vizualne porovnanie tychto dvoch pristupov mbzeme
vidiet na Obr. 3. Nevyhodou tohto pristupu je potreba vytvorenia niekol’kych MDD
namiesto jedného. Na druhej strane, vyhodou méze byt’ zjednodusSenie popisu jednotlivych

stavov systému, ked’ze kazdy je popisany samostatne.
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kot

1

Obr. 3 Struktarna funkcia ¢ (x) reprezentovana jednym diagramom (vl'avo) a sériou diagramov
(vpravo) pozostavajucej z funkcii ¢p(x) > 1 a ¢p(x) = 2 v tomto poradi (vpravo)

Zaujimavou otazkou je tiez porovnanie velkosti resp. celkového poctu vrcholov
MDD potrebnych na reprezentaciu systému pri pouziti danych pristupov. Na zodpovedanie
tejto otdzky sme vykonali experiment, v ktorom sme porovndvali oba pristupy pri
reprezentacii ndhodne generovanych sériovo-paralelnych systémov — ktoré povazujeme za
komplexné pri velkom pocte komponentov, kedy je velkost’ reprezentacie obzvlast dolezita.

Vysledky porovnania mézeme vidiet' v Tab. 3.

Tab. 3 Priemerny pocet vrcholov v jednom MDD a v sérii MDD v zavislosti od poétu
komponentov systému (n) v pripade homogénnych sériovo-paralelnych 3, 4 a 5 stavovych MSS

Jeden MDD Séria MDD
" 3 4 5 3 4 5
500 1995 5138 10 756 1002 1502 2002
1000 4232 11 436 24 926 2002 3 002 4002
1500 6 562 18 210 40 591 3002 4502 6 002
2000 8 959 25 346 57 424 4 002 6 002 8 002
2 500 11 406 32749 75128 5002 7502 10 002

Vysledky experimentu jednoznac¢ne ukazali, ze v pripade sériovo-paralelnych
systétmov je reprezentacia pomocou s€rie diagramov vyrazne vyhodnejSia ako pouZitie
jedného diagramu. Tento vysledok je konzistentny aj pre systémy rdznych velkosti

S rozdielnym poctom stavov.
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4.2 Vypocet frekvencie stavov systému

Frekvencia stavov systému {8} je jedna zo zakladnych topologickych charakteristik
systému, ktorou dokazeme jednoducho porovnat’ systémy s réznymi topologiami. Jej

vypocet spociva vo vyhodnoteni jednoduchého zlomku:

Frei = 284 {17}
e
kde a4 ; je pocet stavovych vektorov (situdcii), kde je systém v stave = j a ay je celkovy
pocet stavovych vektorov. Na vy¢islenie Citatela mdzeme vyuzit' exitujici algoritmus
satisfy-count [11] a menovatel' vypoc¢itame jednoduchym sG¢inom []L;m;. Prakticky
problém takéhoto vypoctu je, Ze aj ked’ je vysledok z intervalu [0,1], ¢itatel' a menovatel’
zlomku su Casto ¢isla, ktoré nie je mozné reprezentovat’ 64-bitovymi udajovymi typmi.

V pripade BSS je moZzné problém s limitovanym rozsahom tidajovych typov vyriesit’
vypocitanim logaritmov ¢itatel'a a menovatel’a a jednoduchou upravou vzt'ahu {17}, ktory
popisujeme Vv praci. Tento postup sa vSak neda aplikovat’ vo vSeobecnosti na MSS. V praci
sme preto popisali Specializovani verziu existujiceho algoritmu na vypocet
pravdepodobnosti, ktora nie je limitovana rozsahom udajovych typov. Otazkou zostavalo, ¢i
ma zmysel aplikovat’ tento algoritmus aj na BSS alebo ¢i je v tomto pripade postup
vyuzivajuci logaritmy rychlejs$i. Na zodpovedanie otazky sme vykonali experimentalne
porovnanie spominanych pristupov vratane zdkladného na BDD reprezentujicich ndhodne

generované systémy. Vysledky porovnania mézeme vidiet' v Tab. 4.

Tab. 4 Priemerny ¢as v mikrosekundach potrebny na vypocet frekvencie stavov systému pomocou
réznych pristupov

n Satisfy-count [ps] SatiSfyi:ics)]u nt-log Nas algoritmus [ps]
10 12 14 10
30 1387 1823 1337
60 59 157 69 047 57 107
80 6471942 191 991 161 950
90 ©788 309 329 563 287 166
100 1057991 470 303 407 762

8 S pouzitim kniznice GMP [87] pre vypocty s neobmedzenou presnostou
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Vysledky experimentu ukazali, Ze nas algoritmus funguje lepSie ako pristup vyuzivajuci
logaritmy. Potvrdil aj nas predpoklad, Ze hoci je mozné pouzit’ zékladny pristup zalozeny na
algoritme satisfy-count — ktory ma porovnatel'ny vykon pre n < 63 — vypoCty zahfnajice
celé ¢isla s neobmedzenou presnost'ou st podstatne pomalSie. Preto sme dospeli k zaveru,
ze je lepSie pouzit’ nas algoritmus aj pre Specialny pripad BSS.

4.3 Efektivny vypocet logickych derivacii

Logické derivacie st velmi uzitoény ndstroj pre vypocet mnohych ukazovatelov
spol'ahlivosti, ako napr. r6znych ukazovatel'ov dolezitosti [20] alebo napriklad minimalnych
reznych vektorov [23]. Ich efektivny vypocet je preto pre proces analyzy komplexnych
systémov vel'mi dolezity.

Derivaciu funkcie reprezentovanej MDD mozeme relativne jednoducho vypocitat
nasledovanim jej definicie (napr. {7}) a s pouzitim existujticich algoritmov na manipulaciu
MDD konkrétne cofactor [11], transform a apply [11]. Tento pristup funguje pomerne
dobre, avSak vyuzitie vS§eobecnych algoritmov nemoéze naplno vyuzit' Specifikd vypoctu
derivacii. Jeho nevyhodou je tiez ze, v zdkladnej podobe nie je univerzalny — pre vypocet
r6znych derivacii musime uvedené algoritmy kombinovat inym sposobom s rdéznymi
parametrami.

V praci sme preto navrhli Specializovany algoritmus na vypocet l'ubovolnej
derivacie [98]. Nas algoritmus vychadza z nasledujicej univerzalnej definicie logickej
derivacie:

af (A)

9x,(s = 1) = A(f(Si'x),f(ri,x)), {18}
kde notacia A predstavuje funkciu, ktora popisuje, ¢i zmena funkcie dana jej argumentami
predstavuje pozadovani zmenu — Vtom pripade vrati hodnotu 1 — alebo nie avrati
hodnotu 0. Funkcia A je parametrom nasho algoritmu, ktory tak mézeme pouzit’ na vypocet
I'ubovol’nej logickej derivacie.

Po technickej stranke nas algoritmus kombinuje algoritmy cofactor, transform
a apply, ktoré sa v zdkladom pristupe pouzivaji samostatne, do jedného kroku. Na zaklade
tejto vlastnosti sme predpokladali, Ze na$ algoritmus by mal byt vo vypocet derivacii

rychlej$i. Na kvantifikovanie rozdielu v rychlosti sme preto vykonali experimentalne

porovnanie zdkladného pristupu anaSho algoritmu pri vypocte integrovanej derivacie
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typu Il {7} z MDD reprezentujucich nahodne generované systémy. Vysledky porovnania

mozeme vidiet’ v Tab. 5.

Tab. 5 Priemerny ¢as v milisekundach potrebny na vypocet IDPLD typu III pre kazdu premenna
pomocou zékladného postupu a pomocou nasho algoritmu

. . . Nas

Pocet Zak,ladny Nas algoritmus

m n pristup algoritmus . ,

vrcholov [/ zakladny

[ms] [ms] )
pristup

2 32 128 322 3570 1538 0,43079
3 23 531 698 6 005 2978 0,49597
4 20 1591 344 18 540 9625 0,51917
5 17 1401 163 13208 6 874 0,52042

Experimentalne porovnanie ukazuje, Ze nas algoritmus je priblizne o 50 % rychlejsi ako
zakladny pristup. Ked’ze vypocet logickych derivacii je jednym zo zékladnych krokov
analyzy spolahlivosti a dolezitosti komponentov, nas algoritmus moéze vyrazne urychlit’

proces analyzy komplexnych systémov.

4.4 Pravdepodobnostné vyhodnotenie diagramov

Pravdepodobnostna analyza poskytuje v porovnani s jednoduchou topologickou analyzou

ovela presnej§i popis spravania systému a vplyvu jednotlivych komponentov
prostrednictvom ukazovatel'ov akymi su napr. dostupnost’ systému {12} alebo Birnbaumova
dolezitost’ {14} a mnohych inych. Pri pouziti MDD na reprezentaciu Strukturnej funkcie je
pri vyhodnocovani vSetkych pravdepodobnostnych ukazovatel'ov kI'icovou tllohou vypocet
pravdepodobnosti navstivenia [48] koncového vrcholu MDD (NTP zangl. ,,Node
Traversing Probability). MDD je nastastie pre vypocet pravdepodobnosti vel'mi vyhodnou
Struktarou. Pravdepodobnosti stavov komponentov mézeme pomyselne stotoznit’ s hranami
MDD, ako mdzeme vidiet' na Obr. 4. Vypocet pravdepodobnosti je nasledne zalezitost'ou
vhodnej prehliadky diagramu a nasobenia vhodnych pravdepodobnosti.

V literature existujii dva zasadné pristupy/algoritmy k vypoctu NTP zvané bottom-
up atop-town. Tieto dva pristupy sa liSia typom prehliadky, ktorti pri vypocte pouzivaju.
Preto ich v praci oznacujeme aj ako post-order a level-order algoritmy. Jednym z vysledkov
prezentovanych v praci je porovnanie tychto pristupov pri

vypocte rdznych

pravdepodobnostnych ukazovatel'ov. Vysledky nasho porovnania mézeme vidiet’ v Tab. 6.
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0 1 2

Obr. 4 Pravdepodobnostny rozhodovaci diagram s pravdepodobnost’ami stavov komponentov
znazornenymi na hranach diagramu

Algoritmy sme porovnavali pri vypocte pravdepodobnosti vSetkych stavov m-stavového
systému zloZené¢ho z n-komponentov so sériovo-paralelnou topoldgiou (prvé dva riadky
tabul’ky) a s ndhodnou topolégiou (posledné dva riadky tabulky). Vysledky ukézali, Ze pri
vy$Som pocte stavov systému je vyhodnejSie pouzit’ top-down algoritmus a, naopak, pri
nizom poéte stavov systému je vyhodnejsi bottom-up algoritmus. Dal§im rozdielom, ktory
V praci popisujeme, a ktory je potrebné pri vybere algoritmu zvazit’ je, Ze jedno vykonanie
top-down algoritmu umoziuje vypocitat’ individualne pravdepodobnosti stavov systému ako
aj dostupnost’ pre rozne UGrovne. Na druhej strane jednoduchsi bottom-up algoritmus

umoziuje pri jednom vykonani vypocet iba jednej charakteristiky.

Tab. 6 Priemerny ¢as v milisekundach potrebny na vypocet pravdepodobnosti vetkych stavov

systému
n m Bottom-up TOF[);T?S(])Wﬂ
50 000 3 15 20
10 000 5 58 30
40 3 1621 1925
20 5 573 330

4.5 Casovo zavislé pravdepodobnostné vypoéty

Vo vySsSie popisanom porovnani pristupov k vypoctu NTP sme pracovali s konStantnymi

pravdepodobnostami stavovo komponentov. Poslednd cast’ prace sa venuje modifikacii
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uvedenych algoritmov, ktord umozni pracovat aj s pravdepodobnostami stavov
komponentov, ktoré uz nie su jednoduchymi konsStantami, ale st funkciami casu.

Prvym rieSenym problémom je vypoCet NTP (ktora stihlasi S vybranym
pravdepodobnostnym ukazovatel'om) v mnohych casovych. Na rieSenie tohto problému sme
identifikovali dva pristupy, ktoré sme nazvali zakladny a symbolicky. Zakladny pristup
vyuziva algoritmus bottom-up alebo top-down bez modifikacii. V ramci dodato¢ného kroku
vSak potrebuje vyhodnotit’ vSetky pravdepodobnosti stavov komponentov v danom case t.
Tento pristup mézeme strucne zosumarizovat’ nasledovnym pseudokdédom, ktory prezentuje
funkciu na vypocet dostupnosti systému vo vSetkych casovych okamihoch ulozenych

V zozname timePoints:

function EVALUATEBAsIc(diagram, j, timePoints, P)
for v t € timePoints do
Pt «—EVALUATEDISTRIBUTIONS(P, t)
values «— {a|j<a<m}
A (t) «CALCULATENTPPOSTSTEP(diagram, values, Py)
end for
end function.

Symbolicky pristup je zaloZzeny na vyuziti symbolickych vypoctov, podl'a ktorych nesie svoje
pomenovanie. Podobne ako zakladny pristup vyuziva jeden z dvojice algoritmov. Tento v§ak
musi byt upraveny alebo vhodne implementovany tak, aby dokézal scitavat’ a nasobit’
symbolické vyrazy, ktoré modze byt reprezentované napriklad vyrazovym stromom. Priklad

takéhoto stromu mdzeme vidiet’ na Obr. 5.

i

Obr. 5 Vyrazovy strom reprezentujuci vyraz, ktory popisuje dostupnost’ BSS; premenné p; a q;
reprezentuju pravdepodobnosti, Ze i-ty komponent funguje a nefunguje v tomto poradi

Symbolicky pristup tak najprv vyuZije jeden z algoritmov na ziskanie vyrazového stromu
reprezentujuceho vybrany pravdepodobnostny ukazovatel' (napr. dostupnost’ systému).

Vstupom algoritmu je vtomto pripade matica symbolickych vyrazov. Nasledne uz
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vyhodnocuje iba ziskany strom v kazdom ¢asovom okamihu. Podobne ako pri zdkladom

pristupe mézeme symbolicky pristup zosumarizovat’ nasledovnym pseudokdédom:

function EVALUATESYMBoOLIC(diagram, j, timePoints, P)
exprTree « CREATETREE(diagram, P)
for v t € timePoints do
A3l (t) —EVALUATETREE(exprTree, t)
end for
end function.

V nasej kniznici TeDDy [75] sme symbolicky pristup implementovali pomocou kniznice
GiNaC [105], ktora podporuje pracu so symbolickymi vyrazmi v jazyku C++.

Zaujimavou otazkou je ako sa dva uvedené pristupy liSia z pohl'adu cCasovej
narocnosti na vypocet pravdepodobnostného ukazovatel'a v mnohych ¢asovych okamihoch.
Za ucelom preskimania tohto rozdielu sme vykonali experimentalne porovnanie tychto
pristupov pri vypocte dostupnosti ndhodne generovanych sériovo-paralelnych BSS.
Vysledky tohto porovnania mézeme vidiet v Tab. 7. Stipce [BDD| a [Strom| obsahuji
velkost' danej Struktury. Zvysné stipce obsahuju celkovy priemerny ¢as v nanosekundach

potrebny na vyhodnotenie dostupnosti systému v 10 ¢asovych okamihoch.

Tab. 7 Porovnanie zdkladného a symbolického pristupu pri vypoéte dostupnosti nahodne
generovanych sériovo-paralelnych systémov

o | oot | pony | | o | symm
10 12 599 1739 26 187 3823 367
20 22 15 218 3 606 51791 101 280 004
30 32 546 208 6 020 82 222 3595 178 608
40 42 11 494 828 7401 103 151 72 100 562 769

Vysledky experiment ukazali, Ze zékladny pristup funguje ovela lepSie ako symbolicky
pristup, ak berieme do uvahy rychlost’ vyhodnotenia NTP. Podobné vysledky sme ziskali aj
z inych experimentov, ktoré vyhodnocovali tisicky roznych ¢asovych okamihov. Hoci
vysledky st Specifické pre nasu implementaciu — kniznicu TeDDy a kniznicu GiNaC na
manipuldciu s vyrazmi —relativny rozdiel medzi oboma pristupmi je znacny. Preto je
nepravdepodobné, Ze by sa pri inych implementaciach vyrazne zmenil.

Symbolicky pristup dosahuje v porovnani so zdkladnym pomerne zI¢ vysledky. Na
druhej strane ndm vSak poskytuje moznosti, ktoré nemozeme zdkladnym pristupom

dosiahnut. Jednou z nich je napriklad mozZnost’ ziskat’ vyraz popisujlci pravdepodobnostny
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ukazovatel. Vyraz modzZeme analyzovat’ napriklad pouzitim kniznice GiNaC alebo ho

mozeme exportovat’ do systému ako napr. Matlab alebo wxMaxima.

5 Zaver

Praca sa zaoberala aplikdciou rozhodovacich diagramov pri analyze spol'ahlivosti

komplexnych systémov. Poskytla obsiahly prehl'ad krokov procesu analyzy spolahlivosti so

zameranim na algoritmy zaloZené na vyuziti rozhodovacich diagramov reprezentujticich

Struktarnu funkciu. Dalej predstavila niekol’ko novych algoritmov a poskytla rozne

vylepSenia a zovSeobecnenia existujicich algoritmov. Prinosom prace su vysledky rieSenia

nasledujucich vyskumnych problémov:

Analyza existujicich pristupov a algoritmov pouzivanych pri reprezentacii
Struktirnej funkcie pomocou rozhodovacich diagramov a ich nasledna analyza:
v v vodnej Casti praca predstavila v§eobecné pristupy pouZivané pri
analyze spol’ahlivosti,
v’ dalej opisala diskrétne funkcie ako matematicky zaklad $truktirnej
funkcie a spdsoby ich analyzy a reprezentacie;
v" nakoniec uvodnej Casti sa zaoberala rozhodovacimi diagramami a ich

aplikaciami v analyze spol'ahlivosti.

Implementacia vykonnej arobustnej softvérove] kniZznice na tvorbu
a manipulaciu s rozhodovacimi diagramami:
v' prva cast’ jadra prace predstavila zakladné aspekty softvérove;j
kniZnice na tvorbu a manipulaciu s rozhodovacimi diagramami;
v' vSetky algoritmy a techniky opisané v praci boli implementované
v open-source kniznici TeDDy.
Vyhodnocovanie, Uprava a zlepSovanie existujicich algoritmov na tvorbu
a manipulaciu s rozhodovacimi diagramami;
v’ prakticka Cast’ prace poskytla experimentilne porovnanie réznych
sposobov poradia vyhodnocovania algoritmu aplikécie;
v' dalej vyhodnotila rozne pristupy k reprezentacii $truktirnej funkcie
sériovo-paralelnych systémov;
v’ praca tiez predstavila univerzalny algoritmus na vypocet stavovych

frekvencie stavov systému.
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e Vytvorenie novych algoritmov ametdéd rozhodovacich diagramov
Specializovanych na pripad pouzitia topologickej a pravdepodobnostnej analyzy
spol’ahlivosti:

v’ praca predstavila zovSeobecnenu verziu algoritmu na dynamicku
tvorbu rozhodovacich diagramov;
v nakoniec predstavila novy univerzalny algoritmus na efektivny

vypocet 'ubovolnych logickych derivacii.

Zaverom mozno konstatovat, ze hlavnym prinosom tejto prace je opis optimalizécie tvorby
a manipulacie s rozhodovacimi diagramami pre analyzu spol'ahlivosti rozsiahlych
komplexnych systémov. Opis zahffia existujiice techniky a algoritmy, ako aj nové algoritmy
navrhnuté v tejto praci. Napokon, vyznamnym praktickym prinosom je softvérova kniznica
s otvorenym zdrojovym kodom Specializovana na analyzu spolahlivosti pomocou

rozhodovacich diagramov.
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Appendix A - Pseudocodes

Appendix A contains pseudocodes of existing algorithms referenced from the main sections
of the thesis. The presented pseudocodes were introduced in the referenced literature and are
not an original contribution of this thesis. All the pseudocodes were adjusted to conform to
the style, notation, and conventions used in this thesis. Otherwise, they contain little to no
modification of the original ideas, though, in some algorithms, we present asimple
straightforward generalization of an algorithm originally proposed just for BDDs. Finally,
considering the implementation aspects, the pseudocodes assume, for simplicity, that the
diagrams use the default order of variables i.e., that for an internal node A it holds that
INDEX(A) = LEVEL(A).

procedure CREATETERMINALNODE(value)
if CONTAINS(terminalTable, value) then
return LOOKUP(terminalTable, value)
else
node < TERMINALNODE(value) > Create new terminal node
PuT(terminalTable, value, node)
return node
end if
end procedure

Alg. A.1 Factory function for the creation of terminal nodes commonly used in decision diagram
packages

procedure CREATEINTERNALNODE(index, sons)
if ISREDUNDANT(soNS) then
return HEAD(SONS) > Return the first element
else if CONTAINS(uniqueTable, (index, sons)) then
return Lookur(uniqueTable, (index, sons))
else
node «— INTERNALNODE(index, sons) > Create new internal node
PuT(uniqueTable, (index, sons), node)
return node
end if
end procedure

Alg. A.2 Factory functions for the creation of internal nodes commonly used in decision diagram
packages
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procedure FROMVECTOR(vector)
stack < MAKEEMPTYSTACK
j<0
while j < Size(vector) do
sons «— MAKETUPLE(Mp) > Create tuple of m, elements
for k=0 to m, do
sons[k] < CREATETERMINALNODE(vector][j])
INCREMENT(])
end for
node < CREATEINTERNALNODE(N, sons)
PusH(stack, (node, n))
SHRINKSTACK(stack)
end while
(root, ) « PEEK(stack)
return MDD(root)
end procedure

procedure SHRINKSTACK(stack)
loop
(node, i) « PEEK(stack)
if i =1then > Peeked node is the root node
return
end if
k—0
count «— 0
repeat
(_, J) < PEEK(Stack, k) > Peek k" element from the top
if j=ithen
count « count + 1
end if
ke—k+1
until k < Size(stack) A i =j
if count <m; —1 then
return
end if
sons «— MAKETUPLE(m; — 1)
fork=0tom;—1do
(son, ) < Pop(stack)
sons[k] < son
end for
node « CREATEINTERNALNODE(i — 1, sons)
PusH(stack, (node, i — 1))
end loop
end procedure

Alg. A.3 From-vector — static algorithm for the creation of MDD from truth vector [80]
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procedure AppLY (left, right, ©)
root «— APPLYSTEP(RoOT(left), RooT(right), ©)
return MDD(root)

end procedure

procedure ApPLYSTEP(left, right, ©)
if CONTAINS(applyCache, (left, right)) then
return LookuP(applyCache, (left, right))
end if
if ISTERMINAL(left) A ISTERMINAL(right) then
node « CREATETERMINALNODE(VALUE(left) © VALUE(right))
else if ISABSORBINGTTERMINAL(Q, left) vV ISABSORBINGTTERMINAL(Q), right) then
node « CREATETERMINALNODE(ABSORBINGELEMENT(Q))
else
iihs < LEVEL(left)
irs «— LEVEL(right)
i «— min(iins, irhs)
sons «— MAKETUPLE(M;)
for k=0 to m; do
if iins < irns then
sons[k] «— ApPLYSTEP(SON(left, k), right)
else
sons[k] «— AppLYSTEP(left, SON(right, k))
end if
end for
node < CREATEINTERNALNODE(i, sons)
end if
PuT(applyCache, (left, right), node)
return node
end procedure

Alg. A.4 Entry point ant the recursive step of the apply algorithm [11], [12]
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procedure SATISFYCOUNT(diagram, value)
root < RooT(diagram)
iroot < INDEX(root)
diff — DOMAINPRODUCT(1, iroot)
count « diff * SATISFYCOUNTSTEP(root, value)
return count
end procedure

procedure SATISFYCOUNTSTEP(node, value)

if ISTERMINAL(node) A VALUE(node) = j then
return 1

end if

if ISTERMINAL(node) A VALUE(node) # j then
return 0

end if

if CONTAINS(memo, node) then
return LOOKUP(memo, node)

end if

count < 0

i « LEVEL(node)

for k =0 to mido
son «— SON(node, k)
ison «— LEVEL(S0N)
sonCount < SATISFYCOUNTSTEP(son, value)
diff — DOMAINPRODUCT(i, ison)
count « diff * sonCount

end for

PuT(memo, node, count)

return count

end procedure

procedure DOMAINPRODUCT (i1, i)
product « 1
i—i
while i <i;do
product « product * m;
i—i+1
end while
return product
end procedure

Alg. A.5 Entry point and the recursive step of the satisfy-count algorithm [11]
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procedure COFACTOR(diagram, i, a)
root — RooT(diagram)
if ISTERMINAL(root) then
return diagram
else if INDEX(root) =i then
newRoot < SON(root, a)
return MDD(newRoot)
else
newRoot «— COFACTORSTEP(root, i, a)
return MDD(newRoot)
end if
end procedure

procedure COFACTORSTEP(node, i, a)
if CONTAINS(memo, node) then
return LOOKUP(memo, node)
end if
if ISTERMINAL(node) then
return node
end if
if INDEX(node) =i then
return Son(node, a)
end if
if INDEX(node) > i then
return node
end if
j < INDEX(node)
sons «— MAKETUPLE(m;)
for k =0 to m; do
oldSon < SonN(node, k)
sons[k] «— CoFACTORSTEP(oldSon, i, @)
end for
newNode <« CREATEINTERNALNODE(], sons)
PuT(memo, node, newNode)
return newNode
end procedure

Alg. A.6 Entry point and the recursive step of the cofactor algorithm [11]
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procedure CALCULATENTPPOSTSTEP(node, values)
if ISTERMINAL(node) then
value < VALUE(node)
if CONTAINS(values, value) then
return 1.0
else
return 0.0
end if
end if
if CONTAINS(memo) then
return LOOKUP(memo, node)
end if
i « INDEX(node)
resut < 0.0
for k=0 to m; do
son < SoN(node, k)
sonProb <« CALCULATENTPPOSTSTEP(son, values)
result « result + sonProb * pi
end for
PuT(memo, node, result)
return result
end procedure

Alg. A.7 Post-order NTP calculation algorithm (bottom-up approach) [10]
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procedure CALCULATENTPLEVEL (diagram)
root — RooT(diagram)
stacks «— ARRAY(n + 2) > Create an array of stacks (queues or lists can also be used)
stacklndex «— INDEX(root)
PusH(stacks[stackindex], root)
PuT(memo, root, 1.0)
while stackindex < n +ido
stack < stacks[stackindex]
while ISNOTEMPTY (stack) do
node « Popr(stack)
i < INDEX(node)
if ISINTERNAL(node) then
nodeNTP « LOOKUP(memo, node)
for k =0 to m; do
son «— SoN(node, k)
if CONTAINS(memo, son) then
SONNTP « LOOKUP(memo, son)
else
SONNTP « 0.0
ison < INDEX(S0N)
PusH(stacks[ison], son)
end ifs
SONNTP « sonNTP + nodeNTP * pix
PuT(memo, son, sonNTP)
end for
end if
end while
while stacklndex < n + 1 A ISEMPTY(stacks[stackindex]) do
stacklndex « stackindex + 1
end while
end while
return memo
end procedure

Alg. A.8 Level-order NTP calculation algorithm (top-down approach) [10]
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