

UNIVERSITY OF ŽILINA
FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

RELIABILITY ANALYSIS OF COMPLEX SYSTEMS USING DECISION DIAGRAMS

Dissertation thesis

Registration number: 28360020243008

Study program: Applied Informatics
Field of study: Informatics
Workplace: Department of Informatics
 Faculty of Management Science and Informatics,

University of Žilina
Supervisor: doc. Ing. Miroslav Kvaššay, PhD.

Žilina, 2024 Ing. Michal Mrena

i

Acknowledgment

First, I would like to thank my supervisor Associate Professor Miroslav Kvaššay, PhD. for

his academic and personal guidance during my studies. I would also like to thank all my

colleagues for creating a welcoming working environment and valuable discussions over

countless lunches and hot beverages.

Furthermore, I would like to thank my parents, without whom my studies would not

have been possible. To my brother for sophisticated vocational conversations. And finally,

to all my family and friends for their support and encouragement.

iii

ABSTRAKT

Analýza spoľahlivosti systémov je zložitý proces zahŕňajúci mnoho úloh. Mnohé systémy,

s ktorými sa v praxi stretávame, označujeme ako komplexné systémy. Okrem bežných úloh

a problémov analýzy spoľahlivosti sa musíme pri analýze komplexných systémov

vysporiadať s veľkým rozsahom takýchto systémov, rôznorodosťou komponentov

a výberom efektívnych algoritmov. Kľúčovým nástrojom analýzy je štruktúrna funkcia,

ktorá popisuje topológiu systému. Efektívna reprezentácia štruktúrnej funkcie komplexných

systémov je preto dôležitou súčasťou analýzy. V práci sa zameriavame na reprezentáciu

štruktúrnej funkcie pomocou rozhodovacích diagramov, ktoré dokážu reprezentovať aj

rozsiahle funkcie. Efektívna tvorba a spracovanie diagramov sú preto hlavnými témami tejto

práce. Skúmanie vlastností štruktúrnej funkcie nám umožňuje skúmať vlastnosti systému,

ktorý funkcia popisuje. Práca sa preto venuje analýze a efektívnej implementácii

existujúcich algoritmov. Ďalej práca predstavuje niekoľko vylepšení existujúcich

algoritmov, ktoré majú za cieľ zrýchlenie algoritmov alebo uľahčenie ich použitia. Hlavnými

prínosmi práce sú predstavenie nového univerzálneho algoritmu na výpočet logických

derivácií, úprava existujúcich algoritmov na pravdepodobnostnú analýzu, ktorá umožňuje

použitie týchto algoritmov s časovo závislými pravdepodobnosťami stavov komponentov

s použitím symbolických výpočtov. Posedným dôležitým prínosom je implementácia

softvérového nástroja na analýzu spoľahlivosti s použitím rozhodovacích diagramov, ktorý

implementuje všetky navrhnuté a upravené algoritmy.

Kľúčové slová: analýza spoľahlivosti; binárny rozhodovací diagram; časovo závislá analýza

spoľahlivosti; pravdepodobnostná analýza spoľahlivosti; softvérové spracovanie

rozhodovacích diagramov; štruktúrna funkcia; viachodnotový rozhodovací diagram

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Príklad_abstrakt
https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Kľúčové_slová

v

ABSTRACT

System reliability analysis is a complicated process involving various tasks. Many of the

systems we encounter in practice are referred to as complex systems. In addition to the usual

reliability analysis tasks and problems, when analyzing complex systems, we have to deal

with the large scale of such systems, the variety of their components, and the selection of

efficient algorithms. A key analysis tool is the structure function, which describes the

topology of the system. An efficient representation of the structure function of complex

systems is, therefore, an important part of the analysis. The thesis focuses on the

representation of the structure function using decision diagrams, which can also represent

large-scale functions. Efficient diagram creation and processing are therefore the main topics

of this thesis. Exploring the properties of the structure function allows for the investigation

of the properties of the system that the function describes. Therefore, the thesis deals with

the analysis and efficient implementation of existing algorithms. Furthermore, the thesis

presents several improvements to the existing algorithms that aim to make the algorithms

faster or easier to use. The main contributions of the thesis are the introduction of a new

universal algorithm for the computation of logical derivatives, and the modification of

existing algorithms for probabilistic analysis, which allows the use of these algorithms with

time-dependent probabilities of the states of the components using symbolic computations.

Finally, an important contribution is the implementation of a software library for reliability

analysis using decision diagrams. The open-source library implements all the proposed and

modified algorithms.

Keywords: Binary Decision Diagram; Multi-valued Decision Diagram; probabilistic

reliability analysis; reliability analysis; software processing of decision diagrams; structure

function; time-dependent reliability analysis

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Kľúčové_slová

vii

Contents

List of Images ... 1
List of Tables .. 4
List of Algorithms .. 6
Nomenclature and Acronyms ... 7
Introduction .. 9
1 Reliability Analysis ... 13

1.1 Number of system states ... 13

1.1.1 Binary-State Systems... 13
1.1.2 Multi-State Systems... 13

1.2 Structure Function ... 14

1.2.1 Structure Function Definition .. 14
1.2.2 Cut and Path Sets ... 15

1.3 Basic System Types .. 16

1.3.1 Series and Parallel Systems ... 16
1.3.2 Series-parallel Systems .. 18
1.3.3 𝑲-out-of-𝒏 Systems ... 19
1.3.4 Complex Systems .. 19

1.4 Topological Analysis ... 20
1.5 Probabilistic Analysis .. 21

1.5.1 Time-independent Analysis ... 21
1.5.2 Time-dependent Analysis .. 23

1.6 Importance Analysis .. 26

1.6.1 Structural Importance .. 26
1.6.2 Birnbaum’s Importance ... 27
1.6.3 Criticality Importance .. 27
1.6.4 Fussell-Vesely’s Importance ... 28

2 Discrete Function .. 29

2.1 Discrete Function Types .. 29

2.1.1 Boolean Function... 29
2.1.2 Multiple-Valued Logic Function ... 30
2.1.3 Integer Function... 30
2.1.4 Pseudo-logic Function ... 30

2.2 Discrete Function Analysis ... 31

2.2.1 Discrete Function Cofactor .. 31
2.2.2 Logical Differential Calculus .. 31

2.3 Application of Logic Derivatives .. 38
2.4 Discrete Function Representation ... 40

2.4.1 Arithmetic Expression ... 40
2.4.2 Truth Table .. 41
2.4.3 Truth Vector .. 42
2.4.4 Decision Tree... 43
2.4.5 Decision Diagram .. 44

viii

3 Decision Diagrams .. 45

3.1 Reduced Ordered Decision Diagrams ... 45

3.1.1 Graph Structure .. 46
3.1.2 Mathematical Foundations... 48
3.1.3 Canonical Representation .. 49
3.1.4 Number of Internal Nodes ... 50
3.1.5 Order of Variables ... 51
3.1.6 BDD Extensions and Alternatives ... 55

3.2 Decision Diagram Implementation.. 56

3.2.1 Node Sharing ... 58
3.2.2 Diagram Creation... 61
3.2.3 Extended Apply ... 71
3.2.4 Diagram Manipulation ... 74

3.3 Decision Diagrams in Reliability Analysis ... 81

3.3.1 Structure Function Representation .. 81
3.3.2 Topological Analysis ... 82
3.3.3 Probabilistic Analysis .. 85
3.3.4 Logic Derivatives... 86

3.4 MDD-Related Tasks Open for Investigation ... 89

4 Efficient Diagram Creation and Manipulation .. 91

4.1 Generating Random Diagrams .. 91

4.1.1 Min-Max Expressions .. 91
4.1.2 Series-Parallel Trees .. 92

4.2 Improvement of Dynamic Creation ... 93

4.2.1 Order of Evaluation ... 93
4.2.2 Extended Apply ... 97

4.3 Representation of Series-parallel Systems .. 99

4.3.1 Comparison of Single and Series of Diagrams .. 99
4.3.2 Influence of the Order of Variables ... 100

4.4 System State Frequency Evaluation .. 100
4.5 Efficient Calculation of Logic Derivatives .. 101

4.5.1 Parametrized Procedure ... 101
4.5.2 Specialized (I)DPLD Calculation Algorithm .. 103

5 Probabilistic Evaluation of Decision Diagrams .. 109

5.1 Calculation of Node Traversing Probabilities ... 109

5.1.1 Bottom-Up Approach .. 109
5.1.2 Top-Down Approach ... 110
5.1.3 Applications in Reliability Analysis .. 111
5.1.4 Experimental Comparison of the Approaches 112

5.2 Probabilistic Calculations with Time-dependent Probabilities 114

5.2.1 Basic Approach .. 114
5.2.2 Symbolic Approach ... 115
5.2.3 Comparison of Symbolic and Basic Approaches 118

ix

Conclusion .. 121
Resume .. 123
Bibliography ... 143
Appendices .. 153

Appendix A – Pseudocodes .. 154
Appendix B – List of Publications.. 161

DISSERTATION THESIS

1

List of Images

Fig. 1.1 Reliability Block Diagrams depicting series system (left) and parallel system (right)

 ... 17

Fig. 1.2 Distribution network with series topology and unreliable edges 17

Fig. 1.3 Distribution network with parallel topology and unreliable edges 18

Fig. 1.4 Reliability Block Diagram depicting series-parallel system consisting of three

components .. 18

Fig. 1.5 Minimal Cut Sets (grey) of a series-parallel system .. 19

Fig. 1.6 Minimal Path Sets (white) of a series-parallel system ... 19

Fig. 1.7 Different state functions modeling the behavior of a 3-state component 24

Fig. 2.1 Four possible types of directional Boolean derivatives of the function 𝑓𝒙 = 𝑥1𝑥2 ∨

𝑥3 depicted using flow diagrams where ~ denotes logical negation and ∧ denotes logical

conjunction ... 33

Fig. 2.2 Abstract Syntax Tree representing function 𝑓𝒙 = max𝑥1, min𝑥2, 𝑥3 40

Fig. 2.3 Decision tree representing the integer function defined in Tab. 2.2 43

Fig. 2.4 Decision diagram representing the same function as DT in Fig. 2.3 44

Fig. 3.1 Left: BDD representing Boolean function, middle: MDD representing MVL

function, right: MDD representing integer function .. 46

Fig. 3.2 MDD containing redundant node (dashed gray outline) and two duplicate nodes

(thick black outline) ... 47

Fig. 3.3 Internal node of a BDD (left) and MDD (right) that represents Shannon’s expansion

with respect to 𝑖th variable.. 49

Fig. 3.4 BDDs with three different orders of variables representing parity function 52

Fig. 3.5 BDDs representing the same function using a different order of variables 53

Fig. 3.6 Node of an MDD before (top) and after (bottom) the swap 54

Fig. 3.7 BDD with complemented edges representing the function 𝑓1𝒙 = 𝑥1 ∨ 𝑥2 (left);

ADD representing function 𝑓2𝒙 = max15𝑥1,10𝑥2 (middle); EVBDD representing function

𝑓3𝒙 = 3𝑥1 + 2𝑥2 − 9𝑥3 (right) ... 55

Fig. 3.8 UML class diagram showing the most important classes on four layers of the TeDDy

library ... 58

Fig. 3.9 Three MDDs represent integer functions each containing node representing the same

function .. 59

UNIVERSITY OF ZILINA

2

Fig. 3.10 Decision diagrams from Fig. 3.9 are represented with a single multi-rooted graph

 .. 60

Fig. 3.11 Transformation of a DT into MDD by the gradual elimination of redundant and

duplicate nodes (redundant terminal nodes are removed in the last step for better readability)

 .. 62

Fig. 3.12 Simple decision diagrams representing a constant function (left) and an integer

function of a single variable (right).. 63

Fig. 3.13 BDDs representing logical conjunction (left) and logical disjunction (right) of 𝑛

Boolean variables ... 64

Fig. 3.14 BDD representing odd parity function of 3 variables (left) and BDD representing

structure function of 3-out-of-5 BSS (right) .. 65

Fig. 3.15 BDDs representing the min function (left) and the max function (right) of 𝑛 integer

variables ... 67

Fig. 3.16 Merger of two BDDs representing Boolean functions 𝑓𝒙 = 𝑥1𝑥2 (left) and 𝑔𝒙 =

𝑥2 ∨ 𝑥3 (middle) using the apply algorithm with logical conjunction 69

Fig. 3.17 Simple combinatorial circuit with four inputs and one output 71

Fig. 3.18 Evaluation of a function represented by a decision diagram 75

Fig. 3.19 MDD representing function 𝑓𝒙 (left) and MDD representing cofactor 𝑓21, 𝒙 76

Fig. 3.20 MDD representing an integer function (left) and MDD representing complement

of the function (right) ... 78

Fig. 3.21 Structure function 𝜙𝒙 represented using a single diagram (left) and a series of

diagrams (right) representing functions 𝜙𝒙 ≥ 1 and 𝜙𝒙 ≥ 2 respectively (right) 81

Fig. 3.22 Probabilistic decision diagram with component state probabilities attached to edges

 .. 86

Fig. 3.23 MDDs representing structure function and intermediate diagrams used in the

calculation of directional logic derivative .. 88

Fig. 3.24 MDDs representing intermediate diagrams and resulting diagram representing the

directional logic derivative ... 88

Fig. 4.1 AST representing series-parallel system depicted in Fig. 1.4 92

Fig. 4.2 Left fold order of evaluation ... 94

Fig. 4.3 Tree fold order of evaluation .. 95

Fig. 5.1 Expression tree representing an expression that describes the availability of a BSS

 .. 115

Fig. 5.2 Reliability block diagram depicting topology of a simple storage system 117

DISSERTATION THESIS

3

Fig. 5.3 Reliability function of the storage system with the topology depicted in Fig. 5.2

 ... 117

UNIVERSITY OF ZILINA

4

List of Tables

Tab. 2.1 Size of the domains of different function types where n is the number of variables,

m is the number of values of the MVL function and 𝑚𝑖 is size of the domain of 𝑖th variable

of the integer function .. 41

Tab. 2.2 Truth table of the integer function 𝑓𝒙 = maxmin𝑥2, 𝑥3, 𝑥1 where 𝑥1, 𝑥2 ∈ 0,1 and

𝑥3 ∈ 0,1,2 .. 41

Tab. 3.1 Number of nodes in BDDs representing specific (symmetric) functions 51

Tab. 3.2 Overview of selected decision diagram packages ... 56

Tab. 3.3 Definitions of common Boolean operations in terms of the ITE operator 70

Tab. 3.4 Definitions of min and max operations in 4-valued MLV using the CASE operator

 .. 70

Tab. 4.1 Properties of the functions used in the experiment .. 96

Tab. 4.2 Average time in milliseconds needed to create BDDs representing outputs of the

adder ... 96

Tab. 4.3 Average time in milliseconds needed to create BDDs representing outputs of the

adder with randomly shuffled rows ... 96

Tab. 4.4 Number of functions in the benchmark in which speed of left fold and tree fold-

based merging are different with respect to value 𝛿 .. 97

Tab. 4.5 Usage of the extended apply algorithm with different arities in the creation of BDD

from an AST (the last parameter is omitted for clarity) ... 98

Tab. 4.6 The average time in milliseconds requires to create BDD from AST 98

Tab. 4.7 The average number of steps of the extended apply algorithm 98

Tab. 4.8 Average number of nodes in a single MDD and in a series of MDDs depending on

the number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5

state MSS ... 99

Tab. 4.9 Average number of nodes in a single MDD and in a series of MDDs depending on

the number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5

state MSS ... 100

Tab. 4.10 Average time in microseconds required to calculate the state frequency using

different approaches ... 101

Tab. 4.11 Parameters of the parametrized procedure for the calculation of any (I)DPLD 102

Tab. 4.12 Functions used as the Λ parameter of our universal algorithm for the calculation

of (I)DPLDs ... 105

DISSERTATION THESIS

5

Tab. 4.13 Average time in milliseconds required to compute IDPLD of type II for each

variable using the parametrized procedure and using our algorithm 106

Tab. 4.14 Average time in milliseconds required to compute IDPLD of type III for each

variable using the parametrized procedure and using our algorithm 106

Tab. 5.1 Properties of diagrams generated for the experiment .. 113

Tab. 5.2 The average time in milliseconds required to calculate all system state probabilities

 ... 113

Tab. 5.3 The average time in milliseconds required to calculate system availability 𝐴 ≥ 1

 ... 113

Tab. 5.4 Storage system component reliabilities ... 117

Tab. 5.5 Comparison of the basic and symbolic approach in the computation of system

reliability of a four-component storage system ... 118

Tab. 5.6 Comparison of the basic and symbolic approach in the computation of system

reliability of randomly generated series-parallel systems .. 119

Tab. 5.7 Comparison of the basic and symbolic approach in the computation of system

reliability of PLA circuits .. 120

UNIVERSITY OF ZILINA

6

List of Algorithms

Alg. 3.1 Entry point of the extended apply algorithm ... 73

Alg. 3.2 Recursive step of the extended apply algorithm .. 73

Alg. 3.3 Helper function used in the step of the extended apply algorithm 74

Alg. 3.4 Entry point of the transform algorithm .. 78

Alg. 3.5 Recursive step of the transform algorithm ... 78

Alg. 3.6 General structure of a step of a recursive diagram manipulation algorithm 79

Alg. 3.7 Entry point of the state-frequency algorithm ... 84

Alg. 3.8 Recursive step of the state-frequency algorithm .. 84

Alg. 3.9 Calculation of directional logic derivative ... 87

Alg. 3.10 Calculation of integrated directional logic derivative of type II 87

Alg. 4.1 Recursive procedure for the generation of random AST representing a series-

parallel system.. 93

Alg. 4.2 Parametrized procedure for the calculation of any (I)DPLD 102

Alg. 4.3 Helper function used in the step of the universal DPLD algorithm 104

Alg. 4.4 Entry point of the universal DPLD algorithm .. 104

Alg. 4.5 Recursive step of the universal DPLD algorithm .. 105

Alg. 5.1 Basic approach to the calculation of system availability in multiple time points 115

Alg. 5.2 Symbolic approach to the calculation of system availability in multiple time points

 .. 116

DISSERTATION THESIS

7

Nomenclature and Acronyms

Acronyms

ADD Algebraic Decision Diagram

AST Abstract Syntax Tree

BDD Binary Decision Diagram

BDT Binary Decision Tree

BI Birnbaum’s Importance

BSS Binary-State System

CI Criticality Importance

DNF Disjunctive Normal Form

DPBD Direct Partial Boolean Derivative

DPLD Direct Partial Logic Derivative

DT Decision Tree

EVBDD Edge-Valued Binary Decision Diagram

FVI Fussell-Veselys’s Importance

IM Importance Measure

IPBD Inverse Partial Boolean Derivative

IPLD Inverse Partial Logic Derivative

ITE If-Then-Else

MCS Minimal Cut Set

MPS Minimal Path Set

MSS Multi-State System

MDD Multi-valued Decision Diagram

MTBDD Multi-Terminal Binary Decision Diagram

MVL Multiple-Valued Logic

RBD Reliability Block Diagram

ROBDD Reduced Ordered Binary Decision Diagram

RODD Reduced Ordered Decision Diagram

ROMDD Reduced Ordered Multi-valued Decision Diagram

SI Structural Importance

SoP Sum of Products

UNIVERSITY OF ZILINA

8

General Notation

𝑎, 𝑏, … value from the set {0,1, … , 𝑚 − 1} or {0,1, … , 𝑚𝑖 − 1}

(𝑎𝑖, 𝒙) input vector where 𝑖th component has value 𝑎

𝛼𝓅 number of state vectors corresponding to path 𝓅

𝛼𝜙 total number of state vectors – the size of the domain of 𝜙

𝛼𝜙,𝑗 number of state vectors for which the structure function evaluates to 𝑗

𝑓(𝑎𝑖, 𝒙) cofactor of integer function 𝑓 with respect to variable 𝑥𝑖 and value 𝑎

𝑖𝐴 index of the variable associated with internal node 𝐴

𝑘 number from the set {0,1, … , 𝑚𝑖𝐴
− 1} indexing edges of internal node 𝐴

𝑚 size of the codomain of integer function; the number of system states

𝑚𝑖 size of the domain of 𝑖th variable; the number of states of 𝑖th component

𝑛 number of variables; number of system components

𝓅 path in MDD

𝜌𝓅 probability of path 𝓅

𝓈 number of nodes in MDD

𝐴, 𝐵, … internal or terminal node

𝐴𝑘, 𝐵𝑘, … 𝑘th son of internal node 𝐴, 𝐵, …

ℐ𝓅
′ set of indices of variables that are not present in path 𝓅

𝒫𝑗 set of all paths leading to the terminal node representing value 𝑗

ℙ𝑛,𝑚 matrix of component state probabilities

𝑇𝑗 a terminal node representing value 𝑗

DISSERTATION THESIS

9

Introduction

Reliability analysis of a system is a complicated process involving several steps.

Considering the nature of the system and the aim of the analysis, we can describe the system

either as a Binary-State System (BSS) [1], [2] or a Multi-State System (MSS) [3], [4]. The

literature offers different mathematical tools for the description of such systems. The one

that we focus on in this thesis is called structure function [2], [5]. The structure function is

a mapping from the states of components of the system to the state of the entire system. The

function alone allows us to perform a topological analysis [6] of the system allowing us to

compare different system topologies. Furthermore, if component state probabilities are

available, we can perform a probabilistic analysis and compute more system characteristics

such as system availability [1], [2]. Also, we can compute various important measures that

quantify how individual components influence the reliability of the system [7].

Depending on the type of the system, the structure function is either a Boolean

function [8], a Multiple-Valued Logic (MVL) function [9], or an integer function [10].

Software processing and analysis of such functions require a suitable representation. One

such representation is a decision diagram. A decision diagram is a directed acyclic graph

that is designed for the efficient representation of discrete functions. Two basic types of

decision diagrams exist. The first, simpler, type is the Binary Decision Diagram (BDD) [11]

designed for the representation of Boolean functions. The second, more general, type is the

Multi-valued Decision Diagram (MDD) [12] introduced for the representation of MVL

functions and integer functions. BDDs and MDDs can be used to represent the structure

functions of BSS and MSS respectively.

Systems subjected to reliability analysis exist in different topologies and

configurations. Some of those systems are regarded as complex systems. The complexity

may originate from different properties of the system. For example, having components of

different natures or having dependent components. Moreover, systems consisting of

numerous components are also regarded as complex. Such properties increase the

complexity of the structure function representing the system, which, consequently,

complicates the analysis of such systems. Therefore, the development of new and

improvement of existing algorithms and approaches to account for increasing complexity is

an actual and important problem in reliability analysis.

Decision diagrams are generally regarded as a very efficient representation of the

structure function, however, the nature of complex systems and the ongoing increase in

UNIVERSITY OF ZILINA

10

complexity pose pressure on the continuous improvement of existing techniques and the

design of new approaches. Therefore, the principal goal of this thesis is the optimization of

the application of decision diagrams in the reliability analysis of complex systems, which

results in the following research topics:

• analysis of existing approaches and algorithms utilized in the representation of

the structure function by decision diagram and in their subsequent analysis;

• implementation of a performant and robust software library for the creation and

manipulation of decision diagrams;

• evaluation, adjustment, and improvement of existing algorithms for the creation

and manipulation of decision diagrams;

• creation of new decision diagram algorithms and methods specialized for the use

case of topological and probabilistic reliability analysis.

The thesis has the following structure. Chapter 1 introduces the basics of a general system

reliability analysis process. It starts with the description of the principal steps of the analysis,

starting with the identification of the system type description in the form of the structure

function. Then it proceeds with the presentation of typical system structures with the

emphasis on the properties of a complex system. Finally, the last part focuses on the

presentation of various system reliability characteristics, topological analysis, probabilistic

analysis (time-independent and time-dependent variants), and importance analysis.

Chapter 2 deals with discrete functions and their relation to reliability analysis. It

starts with definitions of selected discrete function types – namely the Boolean function,

MVL function, and integer function – that are relevant to the reliability analysis described

in Chapter 1. A considerable part of the chapter that follows focuses on logical differential

calculus (specifically the logic derivatives) as a powerful tool for the analysis of discrete

functions followed by the description of its applications in the aforementioned reliability

analysis. The last part of the chapter introduces selected representations of discrete functions

with an emphasis on their efficiency – which introduces the content of the next chapter.

Chapter 3 introduces the core topic of the thesis which is the decision diagram. It

starts with the theoretical description – starting with BDDs and proceeding to the most

general form used in the thesis – MDD representing an integer function. The main part of

the chapter deals with practical aspects of the implementation of decision diagrams and also

introduces our supporting software tool TeDDy – which is one of the practical contributions

of the thesis. Then it focuses on general MDD manipulating algorithms. The chapter

DISSERTATION THESIS

11

concludes with a description of algorithms that are designed specifically for reliability

analysis with the utilization of decision diagrams. Finally, the chapter also presents a new

algorithm for the dynamic merging of decision diagrams and a generalized algorithm for the

calculation of system state frequencies – which are one of the new results of the thesis.

Chapter 4 is fully dedicated to the evaluation of research problems introduced in

Chapter 3. Each of the problems contributes either to the improvement of dynamic diagram

creation or diagram evaluation. The chapter contains experimental evaluations of existing

algorithms as well as novel algorithms. The first experiment deals with the analysis of the

order of diagram merging and its influence on the dynamic creation process. The following

experiment verifies that the generalized algorithm for diagram merging proposed in

Chapter 3 is applicable in practice and simplifies the merger of diagrams using 𝑑-ary

operations. The next experiment shows that the algorithm that we proposed for the

calculation of system state frequencies is the simplest and fastest solution for BSS as well as

MSS. Finally, the last contribution that the chapter introduces is a new universal algorithm

for the calculation of any logic derivative. A description of the algorithm is followed by an

experimental comparison with generic approaches – which shows that our algorithm is

considerably faster. We consider this as one of the significant contributions of the thesis.

Finally, Chapter 5 addresses research problems that deal with the probabilistic

reliability analysis. It first introduces two existing principal approaches to the calculation of

so-called node traversing probabilities, which is an essential part of the probabilistic

analysis. Then, it proceeds with the experimental comparison of the two approaches. The

contribution obtained from the comparison presents use cases that are suitable for each of

the two approaches – showing that both approaches are worth implementing in software

tools and that their correct usage can improve the speed of probabilistic evaluation.

Furthermore, the chapter deals with time-dependent component state probabilities. It

discusses two possible approaches. The first, simpler, one uses the existing algorithms with

little modifications and the second uses manipulation of symbolic expressions. It concludes

with a comparison of the two approaches showing that a simpler approach performs

significantly better. However, the contribution lies in the description and verification of the

utilization of symbolic expressions and their possible advantages.

DISSERTATION THESIS

13

1 Reliability Analysis

A system is a general term describing an entity consisting of components. A component is

a further indivisible part of the system, which contributes to the functioning of the system.

Thus, the state of the components determines the state of the system. Typical reliability

analysis involves tasks such as identification of the importance of individual components,

identification of situations that cause degradation of system performance, or designing the

system to meet certain requirements. This chapter deals with the description of the steps of

the reliability analysis process.

1.1 Number of system states

The first step in the reliability analysis is to identify the number of system states. In this step,

we need to consider the properties of the examined system as well as the aim of the analysis.

In the following sections, we introduce two principal approaches to the description of the

number of system states.

1.1.1 Binary-State Systems

The first and the simplest approach is to consider a system to be a Binary State System

(BSS) [1], [2]. A BSS can be in one of two states that are functioning and failed, often

denoted using numbers 1 and 0 respectively. The decision is clear for systems that are binary

in their nature. An example of such a system is a logic circuit [13], [14] where the

components – logic gates – can either function or not. The binary state approach is also

suitable for a system in which even a slight degradation from the perfectly functioning state

can cause disaster or damage. Typical examples of such systems include nuclear power

plants [15] or aviation systems [16]. Naturally, we can use the BSS approach for a system

that does not belong to either one of the above-mentioned types, for example, for a system

where performance levels are not discrete. In such a case a principal task is to find

a threshold separating working and failed states.

1.1.2 Multi-State Systems

One of the advantages of BSS is the simplicity of the model. However, the binary approach

does not suit well for all the system types. Many systems can operate at several discrete

performance levels. A representative example of such systems is different types of

distribution networks [17] that operate using their full capacity but can also operate at

UNIVERSITY OF ZILINA

14

multiple levels of reduced capacity. We usually describe the states as e.g., perfectly

functioning, functioning, and failed and denote them using 0 for the failed state, 𝑚 − 1 for

the perfectly functioning state (where 𝑚 is the number of states), and natural numbers in

between 0 and 𝑚 − 1 for the intermediate states. Because of the multiple states, we designate

such systems as Multi-State Systems (MSS).

The number of components and system states can vary depending on the type of the

system. Consequently, we recognize two types of MSS. The first type is homogeneous MSS

where each component and the system itself have the same number of states. On the other

hand, nonhomogeneous MSS and its components can have a different number of states. We

usually encounter nonhomogeneous MSS when we examine systems that consist of

components that are different in their nature. An example of such systems is healthcare

systems [18], [19] that usually include humans, hardware, and software.

1.2 Structure Function

1.2.1 Structure Function Definition

After the identification of the number of system and component states, we proceed with the

creation of a mathematical description of the examined system. The description must include

the dependency of the state of the system on the state of its components. We call such

a description a structure function. The structure function of a BSS is a mapping of the

following form [1], [20]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1}𝑛 → {0,1}, (1.1)

where 𝑛 is the number of components of the system, 𝑥𝑖 models state of the 𝑖th component for

𝑖 = 1,2 … , 𝑛 and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a state vector that holds the states of all components.

Later in the thesis, we will show that the definition (1.1) agrees with the definition of the

Boolean function.

We can view a homogeneous MSS as a generalization of BSS. Therefore, its

structure function is a similar mapping of the form [5]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚 − 1}𝑛 → {0,1, … , 𝑚 − 1}, (1.2)

where 𝑛 is the number of components of the system, 𝑚 is the number of system and

component states, 𝑥𝑖 models state of the 𝑖th component for 𝑖 = 1,2 … , 𝑛 and 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛) is the state vector. Finally, we consider a nonhomogeneous MSS where

DISSERTATION THESIS

15

components and the system can have a different number of states. Its structure function is

a further generalized mapping of the form [5]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚1 − 1} × … × {0,1, … , 𝑚𝑛 − 1}

→ {0,1, … , 𝑚 − 1},
(1.3)

where 𝑛 is the number of components of the system, 𝑚 is the number of system states, 𝑚𝑖 is

the number of states of the 𝑖th component, 𝑥𝑖 models state of the 𝑖th component for 𝑖 =

1,2 … , 𝑛 and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the state vector. Definitions (1.2) and (1.3) agree with

the definition of the Multiple-Valued Logic function and integer function that we will

describe in the following chapter.

Since the structure function describes a system, we can study the properties of the

system by studying the properties of the structure function. One of the properties is the

monotonicity of the function. If the structure function of a system is monotonic

(non-decreasing), we say that the system is coherent [1], [21] i.e., there are no situations in

which failure or degradation of performance of a component results in repair or improvement

of the performance of the system. The opposite of a coherent system is a noncoherent

system. For a structure function of a BSS to be monotonic, it must hold for each pair of state

vectors of the form (.𝑖 , 𝒙) that:

 𝜙(1𝑖 , 𝒙) ≥ 𝜙(0𝑖, 𝒙), (1.4)

where the notation (𝑎𝑖, 𝒙) denotes a state vector where the value of 𝑥𝑖 = 𝑎. Similarly, for

a structure function of an MSS to be coherent, it must hold for each pair of state vectors of

the form (.𝑖 , 𝒙) that:

 𝜙(𝑠𝑖, 𝒙) ≥ 𝜙((𝑠 − 1)𝑖 , 𝒙), (1.5)

where 𝑠 = 1,2, … , 𝑚𝑖 − 1.

1.2.2 Cut and Path Sets

One of the useful characteristics of a system is a set of components whose simultaneous

operation or failure is essential for the state of the system. Two significant types of sets for

the reliability analysis are minimal cut sets and minimal path sets. A cut set of a BSS is a set

of its components whose simultaneous failure causes failure of the system given that the

system was operational. For a set to be a Minimal Cut Set (MCS) [22] it must hold that

removal of any component from the set would result in the set no longer being a cut set [1],

[7] i.e., if we consider that all the components of the MCS are failed then a repair of any of

UNIVERSITY OF ZILINA

16

the components causes the system to become functional. Each MCS has a corresponding

state vector known as a Minimal Cut Vector (MCV) [23].

To extend the idea of the MCSs and MCVs to MSS we consider each system state

individually. Both MCS and MCV can be generalized for MSS, but the generalized

definition is more intuitive when we consider MCV. We say that a state vector is MCV with

respect to state 𝑗 of the system if an improvement of the state of any component whose state

can be improved (the component is not perfectly functioning) causes the system to reach

a state at least 𝑗 given that the system is in a state worse than 𝑗 for the state vector.

Analogous to cut sets are path sets. A path set of a BSS is a set of components whose

simultaneous functioning ensures the functioning of the system. The set is a Minimal Path

Set (MPS) [22] if the removal of any component from the set would cause the set to no

longer be a path set [1], [7]. A state vector corresponding to an MPS is called a Minimal

Path Vector (MPV). MPV can also be generalized for MSS. We say that a state vector is

MPV with respect to state 𝑗 of the system if degradation of performance of any component

causes degradation of performance of the system to a state worse than 𝑗 given that the system

is in state 𝑗 or better for the state vector.

1.3 Basic System Types

Real-world systems exist in different topologies and configurations. Some are simple and

we encounter them either as standalone systems or as a part of other systems and some are

more complicated because of their properties or size. In this section, we introduce typical

examples of both kinds.

1.3.1 Series and Parallel Systems

Series and parallel systems are one of the simplest system types. Series BSS is functioning

if and only if all its components are functioning. Similarly, parallel BSS is functioning if and

only if at least one of its components is functioning. Fig. 1.1 shows Reliability Block

Diagrams (RBD) representing a series and a parallel system consisting of three components.

The system is functioning if and only if there exists a path in the diagram connecting left and

right black circles and all the components on the path are functioning.

DISSERTATION THESIS

17

x1 x2 x3

x1

x2

x3

Fig. 1.1 Reliability Block Diagrams depicting series system (left) and parallel system (right)

The structure function of a series BSS has the following form [1], [2]:

𝜙serial(𝒙) = ⋀ 𝑥𝑖

𝑛

𝑖=1

, (1.6)

where the ∧ denotes logical conjunction (AND) and 𝑛 is the number of components.

Similarly, the structure function of a parallel BSS has the following form [1], [2]:

𝜙parallel(𝒙) = ⋁ 𝑥𝑖

𝑛

𝑖=1

, (1.7)

where the ∨ denotes logical disjunction (OR) and 𝑛 is the number of components.

Naturally, MSS also exists in series and parallel topologies. The literature offers

several functions that we can use to represent series and parallel connections. For the series

topology, a sensible option is to use the min function (that returns the minimum of its

arguments). To explain the rationale behind the min function let us consider the distribution

network depicted in Fig. 1.2 and assume that each edge can be in one of three states offering

different transportation capacities. Obviously, the throughput of the network from the source

node (A) to the sink node (B) is limited by the edge with the lowest capacity – the minimum

of the capacities of all edges.

A reasonable function to use for the parallel topology is the max [3], [24] function (returns

the maximum of its arguments). To rationalize the choice function let us consider the

distribution network depicted in Fig. 1.3 and, again, assume that each edge can be in one of

three states offering different transportation capacities. Also, let us assume that the

processing capacity of node B is limited – it can process at most 𝑐𝑚𝑎𝑥 units, where 𝑐𝑚𝑎𝑥 is

the maximum of the capacities of the edges. Hence, the throughput of the network is the

maximum of the capacities of the edges.

A Bx1 x2 x3

Fig. 1.2 Distribution network with series topology and unreliable edges

UNIVERSITY OF ZILINA

18

A Bx2

x1

x3

Fig. 1.3 Distribution network with parallel topology and unreliable edges

Considering an alternative where the processing capacity of node B is not limited, we may

see another sensible alternative, which is to use the sum function (returns the sum of its

arguments) to describe the throughput.

1.3.2 Series-parallel Systems

We usually encounter series and parallel systems as parts of a more complicated system type

– a series-parallel system, which is a result of combining series and parallel topologies. Since

the system is a combination of series and parallel systems, we can use the properties of those

systems to describe the series-parallel system. Its structure function is therefore

a composition of AND and OR operations in the case of BSS and e.g., min and max

operations in the case of MSS. Let us consider the system depicted using RBD in Fig. 1.4.

Assuming the system is BSS, its structure function has the following form:

 𝜙(𝒙) = 𝑥1 ∧ (𝑥2 ∨ 𝑥3). (1.8)

Notice that instead of a variable, the second argument of the ∧ operator is the (𝑥2 ∨ 𝑥3)

expression. Using such nesting expressions, we can describe any series-parallel system.

x2

x3

x1

Fig. 1.4 Reliability Block Diagram depicting series-parallel system consisting of three components

RBD allows us to neatly visualize the MCSs and MPSs of a system. Let us consider the

system depicted in Fig. 1.4 with two MCSs {1} and {2,3} with corresponding state vectors

(0,1,1) and (1,0,0) respectively. The notation {2,3} denotes a set containing the second and

third components respectively. Notice that if any of the 0 elements in the vector would

improve to 1 the system would become operational. Fig. 1.5 shows the MCSs in the RBDs

using the grey color for the elements of the set. Furthermore, let us consider the state vector

(0,0,0). The vector corresponds to the cut set {1,2,3}. The set is not MCS because if we

remove, for instance, the component 1 from the set the resulting set will still be a cut set.

DISSERTATION THESIS

19

x2

x3

x1

x2

x3

x1

Fig. 1.5 Minimal Cut Sets (grey) of a series-parallel system

Similarly, the system has two MPSs {1,2} and {1,3} with corresponding state vectors (1,1,0)

and (1,0,1). If any of the 1 elements would decrease to 0, the system would stop being

operational. Fig. 1.6 shows the MPSs in the RBDs using the white color for the elements of

the set.

x2

x3

x1

x2

x3

x1

Fig. 1.6 Minimal Path Sets (white) of a series-parallel system

Finally, let us consider the state vector (1,1,1), which corresponds to the path set {1,2,3}.

The system in the state described by the set is operational. If we remove component 2 from

the set, the system would still be operational. Therefore, the set is not an MPS.

1.3.3 𝑲-out-of-𝒏 Systems

𝐾-out-of-𝑛 system consists of 𝑛 components and is functioning if at least 𝑘 components are

functioning. It is one of the common system types that we encounter in practice in areas such

as software and hardware engineering [25]. The nature of the system is ideal for providing

redundancy and therefore increasing fault tolerance [26] of the system. For example,

if a 𝑘-out-of-𝑛 system serves as a subsystem of some bigger system, it can operate even

when some of its components fail and therefore provide the time needed to either repair or

replace failed components.

1.3.4 Complex Systems

A considerable number of systems that we encounter in practice are so-called complex

systems. The complexity may have distinct causes for different system types. One of the

more obvious properties is the number of components. For example, we consider

a series-parallel system with a substantial number of components [24] to be a complex

system. In the analysis of the system, we need to put a great emphasis on the efficient

representation of the structure function. Moreover, various noncoherent systems are also

UNIVERSITY OF ZILINA

20

complex. In this case, the reason for the complexity is that certain algorithms used in

reliability analysis assume coherency and therefore are not applicable. An example of

a system type from this category is logical circuits [14], especially with a higher number of

gates. Finally, the complexity may also originate from the different nature of components of

the system, which is often a case for nonhomogeneous MSS. We may encounter such

systems in the analysis of healthcare systems [27] where different elements such as humans,

software, and hardware interoperate within a single system. A challenging task in the

analysis of such systems is the development of algorithms and a suitable representation for

the system.

1.4 Topological Analysis

The structure function captures the topology of the system allowing us to perform

a topological analysis of the system, which we can subsequently use to compare systems

with different topologies. This sort of analysis can be useful in the process of system design.

A basic measure that we use to compare topologies of MSS is the relative frequency of

a system state 𝑗 [6]:

 𝐹𝑟=𝑗 = TD(𝜙(𝒙) ↔ 𝑗), (1.9)

where 𝜙(𝒙) is structure function, 𝑗 ∈ {0,1, … , 𝑚 − 1} where 𝑚 is the number of system

states and TD(.) denotes truth density of a Boolean-valued function i.e., the relative number

of state vectors for which the function takes value 1. Notice that the structure function 𝜙(𝒙)

of an MSS is not a Boolean-valued function. To transform the function into Boolean-valued

form we use the logical biconditional ↔ defined as follows:

 𝜙(𝒙) ↔ 𝑗 = {
 1
 0

𝜙(𝒙) = 𝑗
 otherwise.

 (1.10)

Relative frequency can also include multiple states in the form of the relative frequency of

system states greater than 𝑗 defined as [6]:

𝐹𝑟≥𝑗 = TD(𝜙(𝒙) ≥ 𝑗) = ∑ 𝐹𝑟ℎ

𝑚−1

ℎ=𝑗

, (1.11)

where 𝑗 ∈ {1,2, … , 𝑚 − 1}. The argument of the truth density is defined using the logical

biconditional as:

DISSERTATION THESIS

21

𝜙(𝒙) ≥ 𝑗 = ⋁(𝜙(𝒙) ↔ ℎ)

𝑚−1

ℎ=𝑗

= {
 1
 0

𝜙(𝒙) ≥ 𝑗
 otherwise

, (1.12)

where the ∨ operator denotes logical disjunction.

Notice that for BSS we do not need to transform the structure function using the

logical biconditional since the structure function of a BSS is a Boolean function i.e., we can

directly calculate 𝐹𝑟=1 = TD(𝜙(𝒙)) and 𝐹𝑟=0 = 1 − 𝐹𝑟=1.

1.5 Probabilistic Analysis

The topological analysis considers only the topology of a system. It assumes that each state

of a component is equally probable, which however is often not the case. Some components

are more reliable than others, which influences behavior and consequently the reliability of

the system. Therefore, in order to describe and analyze such systems more precisely, we

need to use probabilistic analysis, which considers component state probabilities. These

probabilities can be either time-independent or time-dependent and thus we also differentiate

time-independent or time-dependent probabilistic analysis.

1.5.1 Time-independent Analysis

1.5.1.1 Description of States

We denote time-independent probabilities of BSS component states as:

 𝑝𝑖 = Pr{𝑥𝑖 = 1} ,

𝑞𝑖 = Pr{𝑥𝑖 = 0},
(1.13)

where 𝑖 = 1,2, … , 𝑛. 𝑝𝑖, which is a probability that 𝑖th component is functioning is known as

component reliability, and similarly, a probability that 𝑖th component failed 𝑞𝑖 is known as

component unreliability. Similarly, for an MSS we denote component state probability as:

 𝑝𝑖,𝑘 = Pr{𝑥𝑖 = 𝑘}, (1.14)

where 𝑖 = 1,2, … , 𝑛 and 𝑘 = 0,1, … , 𝑚𝑖 − 1.

1.5.1.2 System Availability

Structure function and component state probabilities allow us to calculate global system

characteristics known as system availability and unavailability. Availability of BSS agrees

with the probability that the system is in state 1 and is defined as follows [1], [2]:

 𝐴(𝒑) = Pr{𝜙(𝒙) = 1}, (1.15)

UNIVERSITY OF ZILINA

22

where 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛) is a vector of component reliabilities. The unreliability of a BSS,

which is a complementary measure for the availability and agrees with the probability that

the system is in state 0, is defined as follows [1], [2]:

 𝑈(𝒒) = Pr{𝜙(𝒙) = 0}, (1.16)

where 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝑛) is a vector of component unreliabilities.

To generalize measures of availability and unavailability for MSS we consider two

sets of system states. The first set contains states worse than state 𝑗 and the second set

contains state 𝑗 and all better states. States in the second set represent the acceptable

performance of the system for a particular use case and the state 𝑗 represents the boundary

state. Then, we define the availability of MSS with respect to state 𝑗, which agrees with the

probability that the system is in state 𝑗 or better, as follows [3], [4], [5]:

 𝐴≥𝑗(𝒑) = Pr{𝜙(𝒙) ≥ 𝑗}, (1.17)

for 𝑗 = 1,2, … , 𝑚 − 1. Similarly, we define the unavailability of MSS with respect to state

𝑗, which agrees with the probability that the system is in a state worse than 𝑗 as [3], [4], [5]:

 𝑈≥𝑗(𝒑) = Pr{𝜙(𝒙) < 𝑗}, (1.18)

for 𝑗 = 1,2, … , 𝑚 − 1. Lastly, let us notice that in the case of an MSS, the vector 𝒑 is actually

a matrix ℙ𝑛,max(𝑚𝑖) for 𝑖 = 1,2, … , 𝑛 – where 𝑝𝑖,𝑘 denotes an element of the matrix.

However, for the consistency with the literature, we keep the notation 𝐴≥𝑗(𝒑).

Measures of system availability and unavailability allow us to examine system

reliability taking into account not only the topology captured by the structure function but

also the probabilities of component states. This allows us to compare not only different

system topologies but also investigate how the reliabilities of individual components

influence the overall availability of the system.

In addition to system availability and unavailability, we can also define probabilities

of individual system states i.e., a probability that a system is in state 𝑗 [28], which we denote

as Pr{𝜙(𝒙) = 𝑗}.

The system states probabilities, availability, and unavailability are closely tied, and

we can compute one in terms of the other using the following formulas [28]:

Pr{𝜙(𝒙) = 𝑗} = {

1 − 𝐴≥1(𝒑)

𝐴≥𝑗(𝒑) − 𝐴≥𝑗+1(𝒑)

𝐴≥𝑚−1(𝒑)

if 𝑗 = 0

if 𝑗 ∈ {1,2, … , 𝑚 − 2}

if 𝑗 = 𝑚 − 1
,

(1.19)

DISSERTATION THESIS

23

 𝐴≥𝑗 = ∑ Pr{𝜙(𝒙) = 𝑗}

𝑚−1

ℎ=𝑗

, 𝑈≥𝑗 = ∑ Pr{𝜙(𝒙) = 𝑗},

𝑗−1

ℎ=0

 (1.20)

for 𝑗 ∈ {1,2, … , 𝑚 − 1}. Another important characteristic of a system is expected system

performance. Most of the time, the numbers that we use to describe system states are abstract

i.e., they do not have a physical meaning. Expected system performance allows us to

describe a system in terms of physical performance using the following definition [28]:

𝑂(𝒑) = ∑ 𝑜𝑗 Pr{𝜙(𝒙) = 𝑗} =

𝑚−1

𝑗=0

𝑜0 + ∑ (𝑜𝑗 − 𝑜𝑗−1)𝐴≥𝑗(𝒑)

𝑚−1

𝑗=1

, (1.21)

where 𝑜𝑗 denotes physical performance associated with system state 𝑗. As an example, let us

consider a transportation network that can operate in 4 possible states denoted by numbers

0,1,2, and 3. Physical performance associated with the states are the amounts 0, 100, 200,

and 300 of units respectively that the network can transport. So, for example, if the system

is in state 2 it can transport 200 units. Therefore, if there is a requirement that the network

must be able to transport at least 170 units we need to calculate system availability with

respect to state 2 since it is the first state that satisfies the requirements.

1.5.2 Time-dependent Analysis

1.5.2.1 Description of States

A limitation of the time-independent analysis is the assumption that the component state

probability is a constant. However, if we observe a component of a real-world system, we

would notice that the component state probability evolves. Specifically, the component state

probability usually deteriorates in time. This can be intuitively explained, for example, by

physical wear and tear of technical components.

Since we describe the system as an MSS, we consequently need to describe the

change of state of the 𝑖th component in time. For such a description, we use a state function

𝑧𝑖(𝑡). Unfortunately, the number of ways in which the state of a component can change is

infinite. For instance, let us consider four specific state functions of a 3-state component

depicted in Fig. 1.7. Each chart in the figure describes a possible evolution of the component

state in time.

UNIVERSITY OF ZILINA

24

Fig. 1.7 Different state functions modeling the behavior of a 3-state component

The set of values of each state function is {0,1, … , 𝑚𝑖 − 1} in the most general case of

nonhomogeneous MSS. If we consider all possible functions at time 𝑡, then the proportion

of functions that take value 𝑠 agrees with the probability that 𝑖th component is in state 𝑠.

Consequently, we can introduce a discrete random variable 𝑍𝑖 describing all states of the 𝑖th

component [3], [29], [30]:

 𝑝𝑖,𝑠 = Pr{𝑍𝑖 = 𝑠} , 𝑠 = 0,1, … , 𝑚𝑖 − 1,

∑ 𝑝𝑖,𝑠

𝑚𝑖−1

𝑠=0

= 1
(1.22)

Since random variable 𝑍𝑖 changes in time we can define a function of time 𝑍𝑖(𝑡) and then

define a stochastic process as a collection of random variables [5], [31]:

 {𝑍𝑖(𝑡); 𝑡 ≥ 0}. (1.23)

Finally, we define time-dependent reliability and unreliability of BSS component using the

function of time as:

 𝑝𝑖(𝑡) = Pr{𝑍𝑖(𝑡) = 1} ,

𝑞𝑖(𝑡) = Pr{𝑍𝑖(𝑡) = 0} ,

𝑝𝑖(𝑡) + 𝑞𝑖(𝑡) = 1, 𝑡 > 0.

(1.24)

And time-dependent MSS’s component state probabilities as:

 𝑝𝑖,𝑠(𝑡) = Pr{𝑍𝑖(𝑡) = 𝑠} , 𝑠 = 0,1, … 𝑚𝑖 − 1, (1.25)

0

1

2

3
C

o
m

p
o

n
en

t
st

at
e

Time (t)
0

1

2

3

C
o

m
p

o
n

en
t

st
at

e

Time (t)

0

1

2

3

C
o

m
p

o
n

en
t

st
at

e

Time (t)
0

1

2

3

C
o

m
p

o
n

en
t

st
at

e
Time (t)

DISSERTATION THESIS

25

∑ 𝑝𝑖,𝑠(𝑡)

𝑚𝑖−1

𝑠=0

= 1, 𝑡 ≥ 0.

Subsequently, we can use time-dependent component state probabilities along with the

structure function to define the system state function [1], [5]:

 𝒁(𝑡) = 𝜙(𝑍1(𝑡), 𝑍2(𝑡), … , 𝑍𝑛(𝑡)) = 𝜙(𝒁(𝑡)), (1.26)

where 𝒁(𝑡) is a vector of component state functions.

1.5.2.2 System Availability and Reliability

Reliability is one of the basic time-dependent characteristics of a BSS. It is defined as the

probability that the system operates without failure in the time interval (0, 𝑡⟩ given that the

system was functioning at time 𝑡 = 0:

 𝑅(𝑡) = Pr{𝑇𝑓 > 𝑡}; 𝑅(0) = 1, (1.27)

where 𝑇𝑓 is a random variable representing time to failure [1]. A complementary

characteristic to reliability is system unreliability, which represents the probability that the

system will fail in the time interval (0, 𝑡⟩ given that it was functioning at time 𝑡 = 0:

 𝐹(𝑡) = Pr{𝑇𝑓 ≤ 𝑡}; 𝐹(0) = 1. (1.28)

As time progresses the reliability of the system degrades inevitably leading to a failure.

Maintainability of a BSS is the ability of the system to be maintained in or restored to an

acceptable state. Mathematically, we describe maintainability using a function that defines

the probability that the system maintenance will be performed in a specific period:

 𝑀(𝑡) = Pr{𝑇𝑚 ≤ 𝑡}, (1.29)

where 𝑇𝑚 is a random variable identifying the time needed for system maintenance. The

exact meaning of the random variable depends on the type of maintenance that can either be

preventive or corrective [1]. Furthermore, the ability to be repaired implies that there exist

two types of systems repairable and non-repairable while maintainability describes only the

repairable systems. The characteristics of reliability and maintainability can be combined

into the availability and unavailability of BSS, which we also introduced in the case of time-

independent analysis. The time-dependent system availability and unavailability are defined

using the system state function as [1]:

 𝐴(𝑡) = Pr{𝜙(𝒁(𝑡)) = 1}, (1.30)

 𝑈(𝑡) = Pr{𝜙(𝒁(𝑡)) = 0} = 1 − 𝐴(𝑡). (1.31)

UNIVERSITY OF ZILINA

26

We can generalize system availability and unavailability using the same rationale as in the

time-independent analysis by splitting the systems state into two sets of acceptable and

unacceptable states where the state 𝑗 is the first acceptable state. Then we define the time-

dependent availability of MSS with respect to state 𝑗 as [3], [5]:

𝐴≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) ≥ 𝑗} = ∑ Pr{𝜙(𝒁(𝑡)) = ℎ}

𝑚𝑖−1

ℎ=𝑗

, (1.32)

and time-dependent system unavailability of MSS with respect to state 𝑗 as [3], [5]:

𝑈≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) < 𝑗} = ∑ Pr{𝜙(𝒁(𝑡)) = ℎ} = 1 − 𝐴≥𝑗(𝑡)

𝑗−1

ℎ=0

. (1.33)

We can see that a principal difference between time-independent and time-dependent

probabilistic analysis is that characteristics such as system availability or component state

probabilities are functions of time in the latter case instead of being a single number in the

former case.

1.6 Importance Analysis

Topological and probabilistic analysis provide means of studying systems using system

characteristics such as system state frequency or system availability. Though we can use the

characteristics to study how for example a change in the component availability affects the

overall availability of the system, the characteristics nevertheless describe the entire system.

For quantification of the influence of individual components, we use characteristics known

as Importance Measures (IMs). The literature presents various IMs. In this section, we

briefly introduce the commonly used ones.

1.6.1 Structural Importance

Structural Importance (SI) represents one of the simplest IMs. It considers only the topology

of the system and is part of the topological analysis. For a BSS SI is defined as follows [7]:

SI𝑖 =

∑ (𝜙(1𝑖, 𝒙) − 𝜙(0𝑖 , 𝒙))(.𝑖,𝒙)∈{0,1}𝑛−1

2𝑛−1
, (1.34)

where (.𝑖 , 𝒙) is a state vector without 𝑖th component, {0,1}𝑛−1 represents all possible state

vectors of the form (.𝑖 , 𝒙) and (𝑎𝑖, 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛). It agrees with the

relative number of situations when the 𝑖th component is critical for the system activity i.e.

when the state of the component decides whether the system is functioning or failed. Since

DISSERTATION THESIS

27

the SI considers only the topology, it is useful in situations when we do not have information

about component reliabilities.

The SI measure can also be generalized to describe components of MSS. However,

multiple components and system states allow different interpretations of the measure.

Therefore, the authors proposed several definitions. A definition similar to (1.34)

considering a specific change in the component state can be found in [32].

1.6.2 Birnbaum’s Importance

One of the limitations of the SI is that it does not consider component state probabilities.

Birnbaum’s importance (BI) [33] considers system topology as well as component state

probabilities. The literature offers multiple ways of calculating BI for BSS [7], [34], [35]:

BI𝑖 = Pr{𝜙(1𝑖, 𝒙) − 𝜙(0𝑖, 𝒙) > 0} (1.35)

=

𝜕𝐴(𝒑)

𝜕𝑝𝑖
=

𝜕𝑈(𝒑)

𝜕𝑞𝑖
 (1.36)

 = 𝐴(1𝑖, 𝒑) − 𝐴(0𝑖 , 𝒑) = 𝑈(0𝑖 , 𝒒) − 𝑈(1𝑖, 𝒒), (1.37)

where 𝐴(1𝑖, 𝒑), 𝐴(0𝑖, 𝒑) denotes system availability if 𝑖th component is always functioning

or failed respectively and similarly 𝑈(1𝑖, 𝒑), 𝑈(0𝑖, 𝒑) denotes system unavailability if 𝑖th

component is always functioning or failed respectively.

In [7] the authors present several meanings of the definitions (1.35) – (1.37).

Definition (1.35) agrees with the probability that failure (repair) of the 𝑖th component

coincides with failure (repair) of the system. Definition (1.36) defines BI in terms of the rate

at which system availability (unavailability) improves (degrades) with the reliability

(unreliability) of the component. Lastly, according to definition (1.37), BI describes the

decrease in system availability if 𝑖th component fails or similarly a decrease of system

unavailability if 𝑖th component is repaired.

As with the SI, the authors proposed several generalizations of BI for MSS.

A straightforward generalization that considers a specific change in a component state with

respect to system state 𝑗 following the definition (1.37) is presented in [32] and a more

general version that incorporates multiple changes of a component state can be found in [7].

Also, a different approach for homogeneous MSS can be found in [28].

1.6.3 Criticality Importance

One of the drawbacks of BI is that it does not consider the current value of the component

availability/unavailability. For example, the component might be highly influential

UNIVERSITY OF ZILINA

28

according to BI but the probability that the component will fail might be very small, which

practically reduces the importance of the component since it is almost always functioning.

Criticality importance (CI) is defined in terms of BI aiming to solve the drawback by

including component availability/unavailability in the calculation. There exist two versions

of CI one defined in terms of system functioning (CsI) and the other one defined in terms of

system failure (CfI). For a BSS the definitions have the following form [7]:

 C𝑓I𝑖 = BI𝑖

𝑞𝑖

𝑈(𝒒)
, (1.38)

 C𝑠I𝑖 = BI𝑖

𝑝𝑖

𝐴(𝒒)
. (1.39)

CfI measures the probability that the system failed because of the 𝑖th component given that

the system failed and CsI measures the probability that 𝑖th component is critical for the system

functioning given that the system is functioning. Since the CI is defined in terms of BI its

generalization for MSS follows the generalized BI using availability or unavailability with

respect to a given system state 𝑗.

1.6.4 Fussell-Vesely’s Importance

A component contributes to the failure of a system when the failure of the component causes

at least one MCS containing the component to fail. Therefore, a measure known as Fussell-

Veseley’s importance (FVI), which for a BSS is defined in terms of MCSs as follows [7]:

 FV𝑐I𝑖 =
Pr{MCSs(𝑖)}

𝑈(𝒒)
, (1.40)

where the notation {MCSs(𝑖)} represents the event that at least one MCS containing

component 𝑖 has failed. On the other hand, the component also contributes to the system's

functioning. Therefore, another way to define FVI for a BSS is in terms of MPSs [7], [36]:

 FV𝑝I𝑖 =
Pr{MPSs(𝑖)}

𝐴(𝒑)
, (1.41)

where the notation {MPSs(𝑖)} represents the event that at least one MPS containing

component 𝑖 is functioning. The literature offers several generalizations of FVI [37], [38],

[39] for MSS, however, note that their meaning does not correspond to the FVI defined for

BSS since the generalizations are not based on MCSs but use different approaches.

DISSERTATION THESIS

29

2 Discrete Function

In section 1.2, we introduced multiple definitions of the structure function (1.1), (1.2), and

(1.3). Each definition has a form of a discrete function. As we also showed, the structure

function is an integral part of the topological analysis, probabilistic analysis, and calculations

of various importance measures. Therefore, discrete functions are one of the fundamental

tools for reliability analysis. Thus, this chapter focuses on the introduction of discrete

function types that are relevant for the reliability analysis. Also, it deals with the analysis of

properties of discrete functions, which we can subsequently interpret as properties of the

described system. Finally, the chapter presents several approaches to the representation of

the discrete function. Since we aim at the analysis of complex systems with a high number

of components, we mainly focus on the efficiency of the representation. At the end of the

chapter, we introduce decision diagrams as a suitable representation of the structure function

in the analysis of complex systems.

2.1 Discrete Function Types

In general, a function is a mapping from a domain to a codomain. A discrete function is

a function in which each variable takes values from a finite set – the domain of the variable.

The domain of a discrete function itself is a Cartesian product of the domains of all its

variables. We denote the elements of the domain using vector notation 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)

where 𝑛 is the number of variables and 𝑥𝑖 denotes 𝑖th variable. We sometimes refer to 𝒙 as

the input vector. The codomain of a discrete function is also finite. In general, a discrete

function is defined as the following mapping [10]:

 𝑓(𝒙):×𝑖=1
𝑛 𝒟𝑖 → ℒ, (2.1)

where the operator × denotes the Cartesian product and 𝑛 is the number of variables. The

sets 𝒟𝑖 for 𝑖 = 1,2, … , 𝑛 are domains of variables and ℒ is the codomain of the function (set

of values of the function). Note that the sets 𝒟𝑖 and ℒ are finite but not necessarily of the

same cardinalities. Depending on the cardinalities of the sets 𝒟𝑖 and ℒ, we recognize

different types of discrete functions whose description follows.

2.1.1 Boolean Function

The simplest and the most well-known type of discrete function is the Boolean function.

Variables of the Boolean function take values from the set {0,1}, where the values 0 and

UNIVERSITY OF ZILINA

30

1 are often denoted as false and true respectively. The definition (2.1) simplifies to the

following form [8]:

 𝑓(𝒙):×𝑖=1
𝑛 {0,1} → {0,1}. (2.2)

Let us note that the values 0 and 1 can be interpreted differently such as “off–on” or “failed–

working”, depending on the application of the Boolean function.

2.1.2 Multiple-Valued Logic Function

The Multiple-Valued Logic (MVL) function can be seen as a generalization of the Boolean

function where, instead of just two, the MVL variables take values from the set

{0,1, … , 𝑚 − 1}, where 𝑚 ∈ ℕ and 𝑚 > 1. The codomain of the MVL function is also the

set {0,1, … , 𝑚 − 1}. For the MVL function, the definition (2.1) has the following form [9]:

 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚 − 1} → {0,1, … , 𝑚 − 1}. (2.3)

Finally, let us note that in some places in the thesis, we denote the MVL function using the

notation 𝑓𝑚(𝒙) to better express the number of values 𝑚.

2.1.3 Integer Function

The integer function further generalizes the MVL function in a way that the domain of each

variable and the codomain of the function are allowed to have different cardinalities. The

definition of the integer function has the following form [10]:

 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚𝑖 − 1} → {0,1, … , 𝑚 − 1}, (2.4)

where 𝑚𝑖 for 𝑖 = 1,2, … , 𝑛 and 𝑚, 𝑚𝑖 ∈ ℕ and 𝑚 > 1 and 𝑚𝑖 > 1. To explicitly include the

domains in the notation, we denote the integer function as 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝒙) in some places.

Notice that the definition (2.4) is almost identical to the general definition of a discrete

function (2.1). However, an important difference is that the definition (2.4) specifies that

elements of the variable domains and codomain are natural numbers starting from

0 up to 𝑚𝑖 − 1 whereas the general definition (2.1) only specifies that the sets must be finite.

2.1.4 Pseudo-logic Function

The flexibility of the definition (2.4) allows for different special cases. Both Boolean

function and MVL function can be considered as special cases of the integer function.

Moreover, there exists another special case which is the pseudo-logic function. The

important property of the pseudo-logic function is that its codomain is identical to the

codomain of the Boolean function. The pseudo-logic function has the following

definition [10]:

DISSERTATION THESIS

31

 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚𝑖 − 1} → {0,1}. (2.5)

We also sometimes refer to it as a Boolean-valued integer function. Boolean-valued integer

functions usually emerge when we need to identify elements of the domain of the function

that satisfy some property. For example, let 𝑓(𝒙) be an integer function and let 𝑔(𝒙) =

𝑓(𝒙) > 1. Then 𝑔(𝒙) is a Boolean-valued integer function that evaluates to 1 for 𝒙 at which

the function 𝑓(𝒙) evaluates to a number greater than 1.

2.2 Discrete Function Analysis

The analysis of functions of real and complex variables is an established task in mathematics.

Over the years, numerous methods that use tools of differential calculus to analyze their

dynamic properties have been introduced. The literature offers similar tools for the analysis

of discrete functions as well. Before we proceed with the description of the tools, we need

to introduce the cofactor of a discrete function.

2.2.1 Discrete Function Cofactor

We define the cofactor for the integer function since it is the most general form of the discrete

function that we consider in the thesis. Let 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) be an integer function.

Then its cofactor with respect to the variable 𝑥𝑖 and value 𝑎 is:

 𝑓(𝑎𝑖, 𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛−1, 𝑥𝑛), (2.6)

where 𝑎 ∈ {0,1, … , 𝑚𝑖 − 1}, 𝑖 ∈ {1,2, … , 𝑛} and 𝑚𝑖 is the size of the domain of the 𝑖th

variable. The cofactor is a function of 𝑛 − 1 variables, which simplifies the original function

by setting the value of a variable to a constant 𝑎.

2.2.2 Logical Differential Calculus

Logical differential calculus [10], [40] is the mathematical approach that we use to analyze

the dynamic properties of discrete functions. It offers various tools analogous to traditional

differential calculus. The relevant tool for this thesis is a logic derivative. The derivative has

different forms – we start by introducing the simplest ones concerning Boolean functions.

2.2.2.1 Boolean Derivative

The Boolean derivative is a basic type of logic derivative and, as the name suggests, we can

apply it to Boolean functions. To define the derivative with respect to the variable 𝑥𝑖, we use

the cofactor of Boolean function and logical exclusive disjunction (XOR) Boolean operator:

UNIVERSITY OF ZILINA

32

 𝜕𝑓(𝒙)

𝜕𝑥𝑖
= 𝑓(0𝑖, 𝒙) ⊕ 𝑓(1𝑖 , 𝒙). (2.7)

Alternatively, we can also use a different notation with the same meaning:

 𝜕𝑓(𝒙)

𝜕𝑥𝑖
= {

1, if 𝑓(0𝑖, 𝒙) ≠ 𝑓(1𝑖, 𝒙)

0, otherwise
. (2.8)

The derivative defined as (2.7) or (2.8) is a Boolean function of 𝑛 − 1 variables. It describes

properties of the original function in a way that it evaluates to 1 for elements of the domain

where the change (either from 0 to 1 or from 1 to 0) of the value of 𝑖th variable causes

a change of the value of the original function (again either from 0 to 1 or from 1 to 0).

Since XOR is a symmetrical operation (it does not depend on the order of its

arguments) the derivative creates pairs of vectors of the domain of the form (0𝑖, 𝒙) =

(𝑥1, 𝑥2, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) and (1𝑖, 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛). If the change

of the value of 𝑖th variable in the first vector causes a change in the value of the function,

then the opposite change in the second vector necessarily causes the opposite change in the

value of the function. A disadvantage of this derivative is that it hides information about how

(in which direction) the value of the variable changed and in which direction the value of the

function changed. Therefore, to describe the properties of the function more precisely we

use directional Boolean derivatives.

2.2.2.2 Directional Boolean Derivative

In the general form, we define directional Boolean derivative as [10], [20]:

 𝜕𝑓(𝑗 → 𝑗)̅

𝜕𝑥𝑖(𝑠 → 𝑠̅)
= {

1, if 𝑓(𝑠𝑖, 𝒙) = 𝑗 and 𝑓(𝑠̅𝑖, 𝒙) = 𝑗̅
0, otherwise

, (2.9)

where 𝑗, 𝑠 ∈ {0,1}. Derivative (2.9) is a function of 𝑛 − 1 variables that evaluates to 1 for

the vectors of the form (𝑠𝑖, 𝒙) for which the function evaluates to 𝑗 if it holds that the function

evaluates to 𝑗 ̅when the value of the 𝑖th variable changes from 𝑠 to 𝑠̅. Definition (2.9) allows

four specific types of the derivative for four possible combinations of values of 𝑠 and 𝑗. In

first two cases 𝑠 and 𝑗 have the same value, which means that a change of the value of 𝑖th

variable results in the same change in the value of the function. This type of directional

derivative is known as Direct Partial Boolean Derivative (DPBD) and is defined as [10],

[20]:

 𝜕𝑓(1 → 0)

𝜕𝑥𝑖(1 → 0)
=

𝜕𝑓(0 → 1)

𝜕𝑥𝑖(0 → 1)
= 𝑓(1𝑖 , 𝒙) ∧ 𝑓(0𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (2.10)

DISSERTATION THESIS

33

where ∧ denotes logical conjunction. Notice that the definition suggests that both derivatives

are represented by the same function. However, the key difference is in the domain of the

functions. Unlike Boolean derivative (2.7), which is defined for all elements of the domain

of the original function, the DPBD is only defined for elements of the form (1𝑖, 𝒙) for

derivative 𝜕𝑓(1 → 0)/𝜕𝑥𝑖(1 → 0) and for elements of the form (0𝑖, 𝒙) for derivative

𝜕𝑓(0 → 1)/𝜕𝑥𝑖(0 → 1). Therefore, the derivatives must be computed in the specified points

to retain their meaning.

The two other cases include situations when 𝑠 and 𝑗 have opposite values i.e., when

the change of the value of the 𝑖th variable causes the inverse (hence the name) change in the

value of the function. This type of direct Boolean derivative is known as Inverse Partial

Boolean Derivative (IPBD) and is defined as [10]:

 𝜕𝑓(1 → 0)

𝜕𝑥𝑖(0 → 1)
=

𝜕𝑓(0 → 1)

𝜕𝑥𝑖(1 → 0)
= 𝑓(0𝑖 , 𝒙) ∧ 𝑓(1𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (2.11)

Just like with DPBDs, both derivatives are represented by the same function. The difference

is again in the domain where IPBD is only defined for vectors of the form (1𝑖, 𝒙) for

derivative 𝜕𝑓(0 → 1)/𝜕𝑥𝑖(1 → 0) and for elements of the form (0𝑖, 𝒙) for derivative

𝜕𝑓(1 → 0)/𝜕𝑥𝑖(0 → 1). Fig. 2.1 shows a summary of the four types of direct Boolean

derivatives. We can see that each derivative is evaluated only for the elements where 𝑖th

variable has the value from which we observe its change.

𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(0 → 1)/𝜕𝑥1(0 → 1) 𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(1 → 0)/𝜕𝑥1(1 → 0)

𝑓(0,0,0) = 0 0 𝑓(0,0,0) = 0

𝑓(0,0,1) = 1 0 𝑓(0,0,1) = 1

𝑓(0,1,0) = 0 1 𝑓(0,1,0) = 0

𝑓(0,1,1) = 1 0 𝑓(0,1,1) = 1

𝑓(1,0,0) = 0 𝑓(1,0,0) = 0 0

𝑓(1,0,1) = 1 𝑓(1,0,1) = 1 0

𝑓(1,1,0) = 1 𝑓(1,1,0) = 1 1

𝑓(1,1,1) = 1 𝑓(1,1,1) = 1 0

𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(0 → 1)/𝜕𝑥1(1 → 0) 𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(1 → 0)/𝜕𝑥1(0 → 1)

𝑓(0,0,0) = 0 𝑓(0,0,0) = 0 0

𝑓(0,0,1) = 1 𝑓(0,0,1) = 1 0

𝑓(0,1,0) = 0 𝑓(0,1,0) = 0 0

𝑓(0,1,1) = 1 𝑓(0,1,1) = 1 0

𝑓(1,0,0) = 0 0 𝑓(1,0,0) = 0

𝑓(1,0,1) = 1 0 𝑓(1,0,1) = 1

𝑓(1,1,0) = 1 0 𝑓(1,1,0) = 1

𝑓(1,1,1) = 1 0 𝑓(1,1,1) = 1

Fig. 2.1 Four possible types of directional Boolean derivatives of the function 𝑓(𝒙) = 𝑥1𝑥2 ∨ 𝑥3

depicted using flow diagrams where ~ denotes logical negation and ∧ denotes logical conjunction

∧

∧

∧

∧

~

~

~

~

~

~

~

~

∧

∧

∧

∧

~

~

~

~

∧

∧

∧

∧

∧ ~

~ ∧

∧ ~

∧ ~

UNIVERSITY OF ZILINA

34

2.2.2.3 Directional Logic Derivative

The directional logic derivative is a generalization of the directional Boolean derivative for

the MVL function. Let 𝑓𝑚(𝒙) be an MVL function. Then we define directional logic

derivative with respect to variable 𝑥𝑖 as [10]:

 𝜕𝑓𝑚(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, if 𝑓𝑚(𝑠𝑗 , 𝒙) = 𝑗 and 𝑓𝑚(𝑟𝑗 , 𝒙) = ℎ

0, otherwise
, (2.12)

where 𝑠, 𝑟, 𝑗, ℎ ∈ {0,1, … , 𝑚 − 1}, 𝑠 ≠ 𝑟 and 𝑗 ≠ ℎ. The derivative is a function of 𝑛 − 1

𝑚-valued variables, which evaluates to 1 for elements of the domain where 𝑖th variable has

value 𝑠, the function evaluates to 𝑗 and it holds that if the value of the variable changes from

𝑠 to 𝑟 the value of the function changes to ℎ. Notice that the derivative is a pseudo-logic

function that we have described in section 2.1.4.

Depending on the relations of the values 𝑠, 𝑟 and 𝑗, ℎ we recognize two types of

directional logic derivatives. The first type is Direct Partial Logic Derivative (DPLD) for

which it holds that either 𝑠 > 𝑟 and 𝑗 > ℎ or 𝑠 < 𝑟 and 𝑗 < ℎ i.e., a specific increase

(decrease) of the value of the variable causes a specific increase (decrease) of the value of

the function. The second type is Inverse Partial Logic Derivative (IPLD) for which it holds

that either 𝑠 > 𝑟 and 𝑗 < ℎ or 𝑠 < 𝑟 and 𝑗 > ℎ i.e., a specific increase (decrease) of the value

of the variable causes a specific decrease (increase) of the value of the function.

Analogously to DPBDs, the following relation holds for directional logic derivatives:

 𝜕𝑓𝑚(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
=

𝜕𝑓𝑚(ℎ → 𝑗)

𝜕𝑥𝑖(𝑟 → 𝑠)
. (2.13)

Although derivatives in both directions are represented by the same function the key

difference is again in the domains since the directional logic derivative is only defined for

the vectors of the form (𝑠𝑖, 𝒙) and (𝑟𝑖, 𝒙) for DPLD and IPLD respectively.

We can also use the directional logic derivative to analyze an integer function. We

define it in an almost identical way just by changing the type of the function [30]:

 𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

= {
1, if 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝑟𝑖, 𝒙) = ℎ

0, otherwise
,

(2.14)

where 𝑠, 𝑟 ∈ {0,1, … , 𝑚𝑖}, 𝑠 ≠ 𝑟 𝑎𝑛𝑑 𝑗, ℎ ∈ {0,1, … , 𝑚}, 𝑗 ≠ ℎ. Just like with MVL

functions, we recognize two types of derivatives, which are DPLD and IPLD. We can see

that the directional logic derivative (2.14) for the integer function is the most general form

DISSERTATION THESIS

35

that includes directional derivatives of the MVL function and also directional Boolean

derivatives. Therefore, we will consider just this most general case in the rest of the section.

Definition (2.12) allows 𝑚2 ∗ (𝑚 − 1)2 specific directional derivatives of MVL

function for all possible combinations of values of 𝑗, ℎ, 𝑠, 𝑟 and definition (2.14) allows

𝑚 ∗ (𝑚 − 1) ∗ 𝑚𝑖 ∗ (𝑚𝑖 − 1) specific directional derivatives of integer function. We can

see that even for smaller values of 𝑚 the number of possible derivatives is considerable.

However, often we are not interested in the exact influence of a specific change, but we want,

for example, to know whether a certain change in the value of a variable causes any change

in the value of the function. Therefore, to obtain a better overall characteristic of the

examined function we need to use a different type of logic derivative known as integrated

directional logic derivatives.

2.2.2.4 Integrated Directional Logic Derivative

The literature recognizes three types of integrated directional logic derivatives. Each of them

contains information that is contained in several simple directional logic derivatives.

2.2.2.4.1 IDPLD of type I

Integrated logic derivative of type I describes situations when the change of the value of the

𝑖th variable from 𝑠 to 𝑟 causes a change in the value of the function:

• from the value 𝑗 to a value less than 𝑗,

• from a value less than 𝑗 to the value 𝑗,

• from a value greater than 𝑗 to the value 𝑗,

• from the value 𝑗 to a value greater than 𝑗.

The above-enumerated possibilities of a change suggest that the derivative can be defined in

four configurations [30]:

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) < 𝑗

0, otherwise
,

(2.15)

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) < 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) = 𝑗

0, otherwise
,

(2.16)

UNIVERSITY OF ZILINA

36

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↘ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ=𝑗+1

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) > 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) = 𝑗

0, otherwise
,

(2.17)

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ=𝑗+1

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) > 𝑗

0, otherwise
,

(2.18)

where the symbol ∨ denotes logical disjunction. Notice that we can use the logical

disjunction since the simple directional derivatives that we operate on are pseudo-logic

functions. Derivatives (2.15) and (2.16) are defined for 𝑠, 𝑟 ∈ {0,1, 𝑚𝑖 − 1} and

𝑗 ∈ {1,2, … , 𝑚 − 1} and derivatives (2.17) and (2.18) are defined for 𝑠, 𝑟 ∈ {0,1, 𝑚𝑖 − 1}

and 𝑗 ∈ {0,1, … , 𝑚 − 2}. And finally, all of them should be computed only for elements of

the form (𝑠𝑖, 𝒙). In summary the integrated directional logic derivative of type I identifies

situations when a specific change of a value of a variable causes a change of the function

from state 𝑗 to a worse (better) state or vice versa.

2.2.2.4.2 IDPLD of type II

The integrated logic derivative of type II describes situations when the change of the value

of the 𝑖th variable from 𝑠 to 𝑟 causes an improvement of the value of the function or in the

second case a decrement of the value of the function. Therefore, we can define it in two

configurations [30]:

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

𝑗=1

= ⋁ ⋁
𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

𝑚−1

𝑗=1

,

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) > 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙)

0, otherwise
,

(2.19)

DISSERTATION THESIS

37

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

𝑗=1

= ⋁ ⋁
𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

𝑚−1

𝑗=1

,

= 𝑓(𝑥) = {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) < 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖 , 𝒙)

0, otherwise
.

(2.20)

Both versions of the derivative should be computed for elements of the form (𝑠𝑖, 𝒙). In

summary, the integrated directional logic derivative of type II identifies situations when

a specific change in the value of a variable causes any improvement (decrement) of the value

of the function. Notice that we can define the derivative in terms of the derivatives of type I,

which describe the change more precisely. Also, let us notice that the derivative of type II is

the only type that does not contain logical and in its definition.

2.2.2.4.3 IDPLD of type III

Finally, the integrated logic derivative of type III describes situations when the change of

the value of the 𝑖th variable from 𝑠 to 𝑟 causes a change in the value of the function in one of

the following ways:

• from a value greater than or equal to 𝑗 to a value less than 𝑗,

• from a value less than 𝑗 to a value greater than or equal to 𝑗,

• from a value greater than 𝑗 to a value less than or equal to 𝑗,

• from a value less or equal to 𝑗 to a value greater than 𝑗.

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ𝑢 → ℎ𝑑)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ𝑑=0

𝑚−1

ℎ𝑢=𝑗

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) ≥ 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) < 𝑗

0, otherwise
,

(2.21)

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ<𝑗 → ℎ≥𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ𝑑 → ℎ𝑢)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ𝑢=𝑗

𝑗−1

ℎ𝑑=0

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) < 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) ≥ 𝑗

0, otherwise
,

(2.22)

UNIVERSITY OF ZILINA

38

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ>𝑗 → ℎ≤𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(ℎ𝑢 → ℎ𝑑)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗

ℎ𝑑=0

𝑚−1

ℎ𝑢=𝑗+1

= {
1, 𝑖𝑓 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) > 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) ≤ 𝑗

0, otherwise
,

(2.23)

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ≤𝑗 → ℎ>𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(ℎ𝑑 → ℎ𝑢)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ𝑢=𝑗+1

𝑗

ℎ𝑑=0

= {
1, 𝑖𝑓 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) ≤ 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) > 𝑗

0, otherwise
,

(2.24)

where the notation ℎ≤𝑗 denotes all system states that are less or equal to 𝑗 while the meaning

is analogous for other relational operators.

2.3 Application of Logic Derivatives

The importance measures that we described in section 1.6 quantify how a change in

a component state or reliability influences the state and reliability of the entire system. The

evaluation of the IMs, therefore, involves analysis of the dynamic properties of the structure

function. Thus, the logic derivatives constitute a perfect tool for evaluation. In this section,

we describe how we can use logic derivatives to calculate IMs introduced in section 1.6.

Definition (1.34) of the SI agrees with the relative number of situations (state vectors)

in which a failure of a component results in a failure of the system. The definition relates to

DPBD (2.10), which describes situations in which a change in the value of a variable results

in the same change in the value of the function. Therefore, we can calculate SI in terms of

the derivative as [20]:

SI𝑖 = TD (

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
), (2.25)

where 𝜙 is the structure function and TD(.) denotes the truth density. The truth density is

defined as the relative number of elements of the domain of a Boolean-valued function for

which the function evaluates to 1. Note that the DPBD is a function of 𝑛 − 1 variables, which

we need to consider in the calculation of the relative number of states. Details of the

computation of the derivative and the truth density depend on the specific representation of

the structure function. We describe the details of the computation in section 3.3.2 and

section 3.3.4.

DISSERTATION THESIS

39

One of the interpretations of the definition of BI is that it agrees with the probability

that the failure of a component results in the failure of the system. Therefore, we can compute

BI using the DPBD as [20], [41]:

BI𝑖 = Pr {

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
↔ 1}. (2.26)

Notice that the evaluation of (2.26) involves the calculation of the same DPBD as in (2.25).

The difference is in the last step where we calculate probabilities instead of the relative

number of states. Again, details of the computation of probabilities depend on the specific

representation of the structure function.

As we stated in section 1.6, there exist several generalizations of BI for MSS. Logic

derivatives are also useful for the calculation of various generalizations of BI. For example,

we can use integrated DPLD (2.21) to compute one of the generalizations of BI for MSS as:

BI𝑖,𝑠

≥ = Pr {
𝜕𝜙(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑠 − 1)
↔ 1}, (2.27)

where 𝑠 ∈ {1,2, … , 𝑚𝑖 − 1}. The definition and existence of various types of integrated

DPLD imply that there exist multiple versions of BI for MSS since the choice of the

derivative gives a slightly different meaning to the results, which allows us to pick one that

best suits our use case. Also, since the definitions of BI and SI are closely related, for each

version of BI we can compute the corresponding SI just by altering the last step of the

calculation from the calculation of probabilities to the calculation of the relative number of

states. Similarly, we can also calculate the corresponding CI for each version of the BI.

FVI differs from the IMs discussed so far since its definitions (1.40) and (1.41) are

based on MCSs. The basic approach to the calculation of FVI involves the enumeration of

all MCVs (MPVs). Logic derivatives are also a suitable tool for this task since we can use

an extension of the derivative as described in [42]. However, the enumeration of all MCVs

(MPVs) is not an efficient solution, especially for systems with a large number of

components since the number of MCVs (MPVs) is also very large. Fortunately, a more

sophisticated approach exists [43], [44] that also utilizes the extension of the derivative and

can calculate FVI without the enumeration of MCVs (MPVs).

The definitions that we presented in this section show that the logic derivatives are

indeed a perfect tool for the importance analysis because of the relative simplicity of the

definitions and also because we can use one derivative to compute multiple IMs.

UNIVERSITY OF ZILINA

40

2.4 Discrete Function Representation

One of the characteristics of complex systems is that they consist of many components.

Therefore, the structure function representing such a system may be difficult to represent.

Hence a principal task that must precede the reliability analysis itself is the choice of

a suitable representation for the function. The literature provides various representations

some of which are suitable for the representation of any discrete function while others are

specialized to represent a specific type of discrete function e.g. Boolean function. This

section introduces some of the representations that we can apply in reliability analysis.

2.4.1 Arithmetic Expression

The arithmetic expression is one of the simplest representations. We mostly encounter it in

the literature since it is easily readable to humans. The expression consists of variables and

mathematical operators. We denote variables as 𝑥𝑖 where 𝑖 specifies the index of the variable.

The type of mathematical operators depends on the type of function the expression

represents. For Boolean functions, the commonly used operators are logical conjunction

denoted as ∧ (often omitted from the expression), logical disjunction denoted as ∨ , and

logical negation denoted as ̅ over an expression. For the MVL functions and integer

functions commonly used operators are the min and max operators, which return the

minimum and maximum of their arguments respectively.

Fig. 2.2 Abstract Syntax Tree representing function 𝑓(𝒙) = max(𝑥1, min(𝑥2, 𝑥3))

The main disadvantage of arithmetic expressions is that, although they are easily readable to

humans, they are harder to process for a computer. One of the ways to manipulate arithmetic

expressions on the computer is to represent them using an Abstract Syntax Tree (AST). AST

is a graph structure that consists of nodes representing variables and nodes representing

mathematical operators. Fig. 2.2 shows an example of an AST. Though it is easy to evaluate

the AST and perform basic arithmetic operations, it is quite complicated to perform more

complicated calculations such as the calculation of logic derivatives.

DISSERTATION THESIS

41

2.4.2 Truth Table

Another very simple discrete function representation is the truth table. The table explicitly

assigns the value of the function to each element of the domain of the function. This implies

that the size of the table is the same as the size of the domain of the function. Tab. 2.1 shows

formulae for the calculation of the size of the table for different discrete function types. For

each type, the size depends exponentially on the number of variables 𝑛. This property is

impractical even for smaller functions of roughly tens of variables. However, thanks to its

simplicity, the table is often used in examples and for testing since we can simply (but costly)

implement even more complicated calculations such as the logic derivatives.

Tab. 2.2 shows a truth table of an integer function. Besides the straightforward form

of the table as shown in Tab. 2.2, there exist techniques that make the table more compact

[9]. One of the techniques is to enumerate only elements of the domain in which the function

evaluates to a certain value assuming that the function evaluates to the same known value in

all other elements. For example, in the case of a Boolean function, we only need to

enumerate elements of the domain where the function evaluates to 1 and assume that the

function evaluates to 0 in other points. In general, for a function that has a codomain of size

𝑚, we need to enumerate 𝑚 − 1 subsets of the truth table.

Tab. 2.1 Size of the domains of different function types where n is the number of variables, m is the

number of values of the MVL function and 𝑚𝑖 is size of the domain of 𝑖th variable of the integer

function

Function type Size of the domain

Boolean 2𝑛

Multiple-Valued Logic 𝑚𝑛

Integer 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑛

 Tab. 2.2 Truth table of the integer function 𝑓(𝒙) = max(min(𝑥2, 𝑥3), 𝑥1) where 𝑥1, 𝑥2 ∈ {0,1}

and 𝑥3 ∈ {0,1,2}

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇

0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 1

0 0 2 2 1 0 2 2

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

0 1 2 2 1 1 2 2

UNIVERSITY OF ZILINA

42

2.4.3 Truth Vector

A truth table like the one shown in Tab. 2.2 has a regular structure. We can use this property

to make the table more efficient by storing only the last column of the table. We call the

column a truth vector. An important property of the vector is that we can access its elements

using an index 𝑙. Therefore, we need to map the elements of the domain of the function to

the index 𝑙. For an integer function the index can be calculated as follows:

𝑙 = ∑ 𝑜𝑖𝑥𝑖

𝑛

𝑖=1

 where

𝑜𝑛 = 1

𝑜𝑖 = 𝑚𝑖+1𝑜𝑖+1 for 𝑖 = 1,2, … , 𝑛 − 1.

(2.28)

The auxiliary vector 𝑜𝑖 is called an information vector. It is beneficial to calculate the

information vector only once before any further calculations. Furthermore, in the case of the

MVL function and Boolean function, the calculation of the information vector simplifies

since the formula (2.28) simplifies to (2.29) and (2.30) respectively.

l = ∑ 𝑚𝑛−𝑖𝑥𝑖

𝑛

𝑖=1

, (2.29)

l = ∑ 2𝑛−𝑖𝑥𝑖

𝑛

𝑖=1

. (2.30)

The size of the vector is equal to the number of elements of the domain of the function.

Fortunately, we can utilize the way computers store numbers to make vectors more compact.

The smallest addressable unit of memory is a byte that can encode 256 unique values.

However, the sizes of domains of integer variables are usually much smaller, and in the case

of Boolean variables it is just two values i.e., we can encode it using a single bit. Therefore,

we can store the truth vector more efficiently if we encode multiple elements of the domain

using a single byte. Let 𝑝 be the maximum of the sizes of domains of variables of an integer

function and let 𝑛 be the number of variables. Then one byte can store 𝑟 = ⌊log2 𝑝⌋ elements

of the domain and therefore the size of the truth vector is reduced by the factor of 𝑟. Though

this optimization is useful, especially for Boolean functions, it does not help with the

eventual exponential complexity. For example, the memory requirements of a truth vector

representing a Boolean function of 40 variables using the described optimization are

128 GiB of memory. The truth vector becomes large even for dozens of variables.

Nonetheless, the truth vector is useful for testing as a representation of the truth table.

DISSERTATION THESIS

43

2.4.4 Decision Tree

An important property of the truth table is that we can look up the value of the function

corresponding to a given element of the domain. The truth vector allows the lookup using

a simple computation. Another useful technique is to use a so-called Decision Tree (DT).

The decision tree is a specific type of graph that satisfies the tree invariants [45]. A special

kind of DT is a Binary Decision Tree (BDT) that represents a Boolean function. We can use

the decision tree to look up the value of a function using a series of decisions.

A decision tree (Fig. 2.3) consists of two types of nodes. The first type is internal

nodes that represent variables and the second type is terminal nodes that represent values

from the domain of the function. Each internal node is associated with one variable 𝑥𝑖 and

has a tuple of 𝑚𝑖 outgoing edges. The 𝑘th edge in the tuple represents a situation in which

the variable 𝑥𝑖 has the value 𝑘. To look up a value of the function we start at the root of the

tree. In each internal node, we choose an edge depending on the value of the variable. Using

the edge, we move to the next node. We repeat this process until we reach a terminal node.

In Fig. 2.3 the bold edges represent the path in the tree for values of variables 𝑥1 = 1, 𝑥2 =

0, 𝑥3 = 2, which we can shortly denote using the vector notation (1,0,2).

The decision tree is that it is ordered – each level of the decision tree either contains

internal nodes associated with the same variable or contains only terminal nodes (last level).

It follows that the size of the tree is exponential in the number of variables 𝑛 and therefore

the tree is impractical for the representation of bigger functions – just like the truth table.

The graph approach is a basis for a more sophisticated data structure – the decision diagram.

Fig. 2.3 Decision tree representing the integer function defined in Tab. 2.2

UNIVERSITY OF ZILINA

44

2.4.5 Decision Diagram

The decision diagram builds on the idea of the decision tree – to represent a discrete function

using a graph structure. It enhances the graph structure (which no longer is a tree) to allow

for a more compact representation of a discrete function. Like the decision tree, a decision

diagram consists of internal and terminal nodes serving the same purpose as in the decision

tree. The nodes may or may not be ordered depending on a specific type of decision diagram.

Fig. 2.4 shows an example of a decision diagram representing the same function as DT in

Fig. 2.3.

Fig. 2.4 Decision diagram representing the same function as DT in Fig. 2.3

Decision diagrams are the central topic of this thesis, thus, the rest of the chapters provide

an in-depth description of the fundamental properties of decision diagrams and their

application in reliability analysis.

DISSERTATION THESIS

45

3 Decision Diagrams

A decision diagram is a graph structure that can efficiently represent discrete functions.

Researchers have proposed various types of decision diagrams over time. Some of the

diagrams are intended for general discrete function manipulation whilst others aim to solve

a specific problem. This chapter introduces several types of decision diagrams along with

their key properties and algorithms for their creation and manipulation. Finally, the chapter

describes the application of decision diagrams in reliability analysis as well as diagram

algorithms specific to reliability analysis.

3.1 Reduced Ordered Decision Diagrams

The Binary Decision Diagram (BDD) proposed by Lee [46] and further developed by

Akers [47] and Bryant [11] as Reduced Ordered Binary Decision Diagram (ROBDD) is,

historically, the first decision diagram. The literature often refers to ROBDD as just a Binary

Decision Diagram (BDD) since this version is the most widely used. In this thesis, we will

also use the term BDD instead of ROBDD for brevity. BDD is a graph structure designed

for the representation of Boolean functions However, theoretical principles and techniques

used in its definition are the basis for most of the other diagrams described in this chapter.

As we described in Section 2.1 the Boolean function (2.2) is a special type of discrete

function (2.1). Therefore, it is natural that techniques and approaches utilized in its

representation in the form of the BDD were considered and used in the development of

similar techniques for the representation of other types of discrete functions – namely the

MVL function (2.3) and integer function (2.4). The authors proposed the Reduced Ordered

Multi-valued Decision Diagram (ROMDD) [12] as a generalization of the (RO)BDD to

represent these functions. Like (RO)BDD, the literature often refers to ROMDD shortly as

MDD. We will also use this notation in this thesis.

Though historically, decision diagrams have been developed from simpler BDD to

more general MDD and others, we will proceed with the description of MDD in its most

general form which represents an integer function. This approach is more concise since BDD

and MDD representing MVL function are only a special case and, hence, do not require

separate descriptions. In Fig. 3.1 we can see all three diagram types mentioned – BDD as

the simplest type and two versions of MDD, the first one representing an MVL function and

the second one representing an integer function.

UNIVERSITY OF ZILINA

46

Fig. 3.1 Left: BDD representing Boolean function, middle: MDD representing MVL function,

right: MDD representing integer function

3.1.1 Graph Structure

MDD is a graph structure that consists of terminal nodes that represent values of the function

and internal nodes that represent variables. A terminal node is identified by the value it

represents. Let us denote nodes using capital letters 𝐴, 𝐵, … . Then, we denote the value of

a terminal node 𝐴 as VALUE(𝐴). Also, we use the notation 𝑇𝑎 to denote a terminal node

representing value 𝑎. In Fig. 3.1 and all other figures, we denote terminal nodes using

a square shape with a number representing the value. An internal node is associated with

a variable 𝑥𝑖 and a tuple of 𝑚𝑖 edges leading to other nodes – sons1 of the node. The edges

represent possible values of the variable – 𝑘th edge represents value 𝑘 for 𝑘 = 0,1, … , 𝑚𝑖 −

1. Let 𝐵 be an internal node. Then, we denote the index 𝑖 of the variable it is associated with

as INDEX(𝐵) or shortly as 𝑖𝐵 and its 𝑘th son as SON(𝐵, 𝑘) or shortly as 𝐵𝑘.

One of the principal operations that we can perform on MDD is to evaluate it for

some specific input vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛). During the evaluation, we repeat a decision

in each internal node (starting at the root node) such that we choose an edge according to the

value of 𝑥𝑖. The edge leads to another node, which is either an internal node – in which case

we repeat the process, or it is a terminal node that contains the value of the function

corresponding to 𝒙. An alternating sequence of internal nodes and edges that lead to

a terminal node is known as a path [48].

1 The term son or direct successor is typically used with tree structures. However, it is short,

descriptive and conveys the intended information very well also in the case of decision diagrams.

DISSERTATION THESIS

47

Fig. 3.2 MDD containing redundant node (dashed gray outline) and two duplicate nodes (thick

black outline)

Nodes of an MDD are ordered on levels. The last level contains terminal nodes. Other levels

contain internal nodes and all internal nodes on the same level are associated with the same

variable. We denote the level of node 𝐴 as LEVEL(𝐴). The first level contains a single node

– the root node – denoted as 𝑟𝑜𝑜𝑡. Consequently, using this notation, we may write the

following relations LEVEL(𝑟𝑜𝑜𝑡) = 1 and LEVEL(𝑇𝑎) = 𝑛 + 1 for 𝑎 = {0,1, … , 𝑚 − 1}.

Edges in MDD can only lead to nodes on lower levels. This rule ensures that nodes

are in the same order on each path from the root node to a terminal node. This property is

captured in the Reduced Ordered MDD part of the full name. Consequently, the order of

variables is one of the properties that we can describe for each ordered MDD. In Fig. 3.1

(and in most of the other figures depicting diagrams) we use the so-called implicit order,

which orders variables by their indices i.e., 𝑥1 on the first level, 𝑥2 on the second level all

the way to the 𝑥𝑛 on the second to last level i.e., it holds that INDEX(𝐴) = LEVEL(𝐴).

Another important property of MDD is that it does not contain any redundant nodes

and no duplicate nodes. The two properties ensure that each node in the diagram is unique.

A redundant node is a node with all edges leading to the same node. Decisions in such a node

will always result in the selection of the same son (e.g. during the evaluation). Therefore,

there is no need to keep such a node in the diagram. In Fig. 3.2 we can see an example of

a redundant node (representing variable 𝑥2) marked with a dashed gray outline. Two nodes

are duplicates if they are roots of two isomorphic subgraphs. Therefore, only one node from

the group of duplicate nodes is always retained. This property is captured in the Reduced

Ordered MDD part of the full name. More examples of redundant and duplicate nodes can

be found in section 3.2.2.

UNIVERSITY OF ZILINA

48

3.1.2 Mathematical Foundations

The mathematical foundation of decision diagrams lies in a recursive application of

Shannon’s expansion [49] (for BDD) and generalized Shannon’s expansion [9] (for MDD).

The definition of Shannon’s expansion uses the cofactor of a discrete function (2.6). The

Shannon’s expansion with respect to variable 𝑥𝑖 is defined in terms of the cofactor as:

 𝑓(𝒙) = 𝑥𝑖𝑓(1𝑖, 𝒙) ∨ 𝑥𝑖̅𝑓(0𝑖, 𝒙), (3.1)

for the Boolean function and the generalized version for an integer function is defined as:

𝑓(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ 𝑓(𝑘𝑖, 𝒙))

𝑚𝑖−1

𝑘=0

, (3.2)

where 𝑖 ∈ {1,2, … , 𝑛}, 𝑘 ∈ {0,1, … , 𝑚𝑖 − 1} and ↔ represents the logical

biconditional (1.10). The expansion (3.1) splits the function into two cofactors of the

function – 𝑓(1𝑖, 𝒙) and 𝑓(0𝑖, 𝒙). The disjunction of two conjunctions selects exactly one of

the cofactors based on the value of the variable 𝑥𝑖. The selection or more suitably –

the decision, is neatly represented by an internal node, which can be considered a graph

representation of Shannon’s expansion with respect to variable 𝑥𝑖. The generalized

Shannon’s expansion (3.2) follows the same rationale by selecting exactly one of the 𝑚𝑖

cofactors of the function with respect to variable 𝑥𝑖. The decision is achieved by the logical

biconditional {𝑥𝑖 ↔ 𝑘} evaluating to 1 for exactly one value of 𝑘 and to 0 for all other values.

The multiplication then selects only one of the cofactors. Fig. 3.3 illustrates the relationship

between the expansions (3.1) and (3.2) and an internal node of a decision diagram.

Fig. 3.3 shows that each node except the root node on a certain level of the diagram

represents a cofactor of some function from the above levels. The expansion (3.2) effectively

splits the domain of the function into 𝑚𝑖 parts of the form (𝑎𝑖, 𝒙) for 𝑎 = 0,1, … , 𝑚𝑖 − 1. In

each part, the value of the variable 𝑥𝑖 is known and the number of variables is reduced by

one. Therefore, the cofactors (son nodes) are either constant functions (terminal nodes) or

they are internal nodes representing another recursive expansion. The recursion is

guaranteed to terminate after at most 𝑛 expansions since values of all variables are

necessarily known at that point. This sets the upper bound on the number of levels of

a reduced ordered decision diagram, which is 𝑛. However, the cofactor can turn to a constant

function sooner when it evaluates to the same value for all elements of its domain. This

agrees with the situation when an edge in a diagram skips some levels and goes directly to

a terminal node.

DISSERTATION THESIS

49

Fig. 3.3 Internal node of a BDD (left) and MDD (right) that represents Shannon’s expansion with

respect to 𝑖th variable

Lastly, Fig. 3.3 shows an important property of the decision diagrams that not only the root,

but each node represents a discrete function (even a terminal node, which represents

a constant function). Therefore, when suitable, we can use the term function and node

interchangeably.

3.1.3 Canonical Representation

The reduced and ordered properties of MDD ensured that MDD is a canonical

representation of a discrete function. This was proven by Bryant [11] for BDD and later by

the authors in [12] for MDD. Canonical representation ensures that each function has

a unique representation. An example of a representation that is not canonical is an arbitrary

expression. For instance, Boolean functions 𝑓1 and 𝑓2 defined by expressions 𝑓1(𝒙) = 𝑥1𝑥2 ∨

𝑥2𝑥3 and 𝑓(𝒙) = 𝑥1̅̅̅𝑥2𝑥3 ∨ 𝑥1𝑥2𝑥3̅̅ ̅ ∨ 𝑥1𝑥2𝑥3 represent the same function even though they

contain different numbers of terms and different operators. In general, to check whether two

non-canonical representations of discrete functions represent the same function, we

transform each representation into some other – canonical – representation and compare

them for equality.

In the case of MDDs, we need to define the equality of two nodes to be able to

compare two diagrams. The first condition for nodes 𝐴 and 𝐵 to be equal is that they must

both be either terminal nodes or internal nodes. If they are terminal, they are equal if and

only if VALUE(𝐴) = VALUE(𝐵). If they are internal, they are equal if and only if INDEX(𝐴) =

INDEX(𝐵) and 𝐴𝑘 = 𝐵𝑘 for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1. Notice the recursive nature of equality

comparison, which shows that each node can be considered as a root of (sub)diagram on its

own i.e., each node (not only the root node but even terminal nodes) represents a unique

function. Implementation of the comparison using the definition would be relatively

complicated since it would require simultaneous traversal of both diagrams. Hence, in

section 3.2.1 we describe an efficient approach that is used in practice.

UNIVERSITY OF ZILINA

50

Another typical example of a canonical representation is the truth table which. As we

described in section 2.4.2 and section 2.4.3, the truth table is quite inefficient for the

representation of larger functions. However, it is useful for testing and verification because

of its simplicity. Lastly, let us note that even though expressions, in general, are not canonical

representations, some expressions with certain restrictions such as Disjunctive Normal

Form [8] are canonical representations.

3.1.4 Number of Internal Nodes

One of the key properties of each discrete function representation is its size, specifically, the

relation of the size to the number of variables 𝑛. The reason is the practical limitation posed

by the limited amount of memory and complexity of the algorithms that work with the

representation, which usually depends on the size. When we described other discrete

function representations such as the truth table or the decision tree, we also provided

a formula to calculate the size of the representation for a given number of variables 𝑛 (see

Tab. 2.1, and section 2.4.4). Unfortunately, it is not possible to do the same calculation for

decision diagrams in general. Nevertheless, we can calculate the worst possible size of

a diagram. Consider MDD representing 𝑚-valued logic function of 𝑛 variables. Then we can

calculate the upper bound on the number of nodes as [50]:

min

ℎ
(

𝑚𝑛−ℎ − 1

𝑚 − 1
+ 𝑚𝑚ℎ

− 𝑚), (3.3)

where 0 ≤ ℎ ≤ 𝑛. To get a better insight into the reasoning behind the expression we need

to follow constraints of the structure of a decision diagram [51]. There is only one node on

the first level of the diagram. At the second level, there can be at most 𝑚 nodes (sons of the

root node). For the next levels, the number of possible unique nodes grows exponentially

following the branching of a decision tree. However, at the same time, there can be at most

𝑚 terminal nodes at the last level of the diagram. Since each node in the diagram is unique

and edges can only lead to nodes at lower levels the number of nodes at the second to last

level (last internal level) is also limited. We can see that the size of the diagram grows

exponentially from the top and combinatorically from the bottom. The increasing sequences

“meet” at some internal level given by ℎ, which minimizes the expression (3.3). Therefore,

the first term of the addition accounts for the exponential growth of the diagram from top to

bottom, and the second term accounts for the combinatorial growth from the bottom of the

diagram.

DISSERTATION THESIS

51

Tab. 3.1 Number of nodes in BDDs representing specific (symmetric) functions

Function Number of internal nodes

Logical conjunction/disjunction 𝑛

Odd parity function 2𝑛 − 1

Structure function of a 𝑘-out-of-𝑛 system 𝑘(𝑛 − 𝑘 + 1)

The exponential upper bound on the number of nodes does not seem to improve the

exponential complexity of the decision tree and the truth table. However, for many functions

that we encounter in practice, the size of the diagram is much more favorable. A typical

example is the representation of symmetric functions that we briefly describe in

section 3.1.5. In Tab. 3.1 we can see formulas to calculate the number of internal nodes in

BDDs representing such functions (the number of terminal nodes is always two, except in

the special case of a constant function). Notice that the numbers are much better than

exponential. Also, the size of the diagram is closely tied to the order of variables, which we

discuss in section 3.1.5.

3.1.5 Order of Variables

The order of variables in a decision diagram is one of the properties required for it to be

a canonical representation. A well-known consequence of this property is that it might

influence the size – the number of nodes – of the diagram [11]. We can classify diagrams

into two groups. The first group contains diagrams whose size does not depend on the order

of variables and, naturally, the second – larger group – contains diagrams whose size

depends on the order of variables.

Diagrams in the first group represent symmetric functions – functions that evaluate

to the same value regardless of the order of their arguments. Diagrams representing such

functions have a regular structure that does not change for different orders of variables.

Typical examples of such functions are the Boolean parity function, logical conjunction of

𝑛 variables, logical disjunction of 𝑛 variables, min function, max function, etc. Fig. 3.4

shows BDDs representing the Boolean parity function of three variables. BDDs in the figure

have different orders of variables and they have the same regular ladder-like structure.

UNIVERSITY OF ZILINA

52

Fig. 3.4 BDDs with three different orders of variables representing parity function

The second group of diagrams is more important since we encounter them more often and

therefore are important to consider in the design of software tools for the creation and

manipulation of decision diagrams. The order of variables can be a factor that decides

whether we can construct a diagram within reasonable time and memory constraints. For

example, Fig. 3.5 shows BDDs representing Boolean function 𝑓(𝒙) = 𝑥1𝑥2 ∨ 𝑥3𝑥4 ∨ 𝑥5𝑥6

with two different orders of variables. Notice that even for such a simple function the number

of nodes grows significantly. Therefore, it is vital to use a suitable order of variables.

Unfortunately, finding an optimal order is an NP-complete problem [52]. Hence, in practice,

we are reliant on the use of a variety of heuristic approaches.

The literature describes two principal types of heuristics for the choice of the order

of variables [53], [54], [55]. The first type is static heuristics. Their key property is that they

choose the order of variables before the creation of any diagrams. Then, during and after the

creation the order stays the same. The advantage of the static approach is that it can exploit

the properties of the specific problem and therefore find a better order for that specific

problem. On the other hand, it might not be possible to use the approach for generic diagram

manipulation tools.

The main idea behind the heuristics of the second type is to gradually re-order

variables as the diagrams are created, hence, those heuristics are called dynamic heuristics.

Since they are opposite to the static ones their advantage is that they do not need any

knowledge about the function(s) the diagram(s) represent. This allows them to be used in

generic decision diagram manipulation tools. Presumably, the most well-known dynamic

heuristic is variable sifting [55] originally proposed for BDDs.

DISSERTATION THESIS

53

Fig. 3.5 BDDs representing the same function using a different order of variables

A vital operation for each dynamic heuristic is a swap of indices between two adjacent levels

in a diagram so it can gradually adjust the order of variables using a series of swaps. The

swap operation needs to maintain all invariants of the diagram – mainly that each node

represents a unique function, and the function the node represents does not change during

the lifetime of the node. The implementation of the swap operation is based on the

observation that to swap nodes that represent variable 𝑥𝑖1
 with nodes that represent variable

𝑥𝑖2
 on the next level, we only need to examine nodes at two levels and modify nodes

representing variable 𝑥𝑖1
 [56], [57].

To swap a node we modify it by changing its index from 𝑖1 to 𝑖2 and set its sons to

new nodes with index 𝑖1 and sons that were grandsons of the original node in such a way,

that the function is preserved at the node. Fig. 3.6 shows the swap operation for a specific

example. Bold darker edges show part of a path in the diagram. The important thing to notice

is that the path (and all other paths) leads to the same grandson after the swap. After the

swap, the old sons of the node can be freed (if they are not shared by some other nodes in

UNIVERSITY OF ZILINA

54

the diagram), also the newly created nodes might be redundant, so they are not created. This

is the point where a series of swaps can result in a new diagram that contains fewer nodes.

An interesting observation is that the swap operation practically mutates the state of

the node by changing pointers to its sons and its index, however, logically the node

represents the same function and therefore it does not violate the immutability invariant.

The variable sifting heuristic described in [55] uses a series of swaps to find a better

order of variables. It places each variable on a level where the total number of nodes in the

diagram is the smallest. It does so by first trying to place a variable (by swapping all nodes

associated with a given variable) on each level of the diagram and subsequently restoring

the best-observed case. The order in which variables are placed is given by the total number

of nodes initially associated with the given variable starting with the variable with the highest

number of nodes.

Although heuristics can help a lot in the practice there exist some functions for which

the number of nodes in the diagram will depend exponentially on the number of variables

regardless of the order of variables. We call such functions inherently complex

functions [11]. An example of an inherently complex function is a Boolean function

describing an integer multiplier [11].

Fig. 3.6 Node of an MDD before (top) and after (bottom) the swap

DISSERTATION THESIS

55

3.1.6 BDD Extensions and Alternatives

Since its introduction, BDD has proven to be a fundamental tool for solving problems in

areas such as logic synthesis [58] or formal verification [59]. The reason for its popularity

among researchers is that it can represent Boolean functions efficiently and is supported by

various software libraries (see section 3.2).

Naturally, a general tool – despite being reasonably efficient – cannot exploit the

specifics of a given problem. Therefore, the researchers have proposed various modified

versions of the BDD structure that are designed to solve a narrower set of problems. BDD

with complemented edges [60], [61] simplifies the representation of complemented Boolean

functions. Zero-suppressed Decision Diagram (ZDD) [62] improves diagram sizes for

Boolean functions representing sets (especially sparse sets). Algebraic Decision Diagram

(ADD) [63] allows more terminal nodes than just two nodes representing values 0 and 1.

And Edge-Valued Binary Decision Diagram (EVBDD) [64] also allows more terminal nodes

than just two nodes representing values 0 and 1.

In addition to the above-named BDD extensions, researchers have proposed several

other modifications – using various forms of binary encoding of multi-state variables and

functions – such as logarithmic BDDs (LBDD) [65], Multi-State BDDs (MBDD) [66], or

Multi-Rooted Binary Decision Diagrams [67]. Finally, in Fig. 3.7, we can see examples of

selected BDD extensions.

Fig. 3.7 BDD with complemented edges representing the function 𝑓1(𝒙) = 𝑥1 ∨ 𝑥2̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅ (left); ADD

representing function 𝑓2(𝒙) = max(15𝑥1, 10𝑥2) (middle); EVBDD representing function 𝑓3(𝒙) =
3𝑥1 + 2𝑥2 − 9𝑥3 (right)

UNIVERSITY OF ZILINA

56

3.2 Decision Diagram Implementation

Researchers have developed several software libraries implementing decision diagrams in

different programming languages. The libraries are often referred to as decision diagram

packages. The most well-known are the BuDDy [68] and CUDD [69] written in C language

with an interface for C++ and the more recent Sylvan [70] parallel BDD package written in

C language. Several programming languages offer libraries that serve as interfaces to call

these libraries such as CUDD for Haskell [71] or dd for Python [72]. Furthermore, several

implementations in other programming languages exist, such as the JDD [73] library for Java

and the DecisionDiagrams library [74] for C#. Tab. 3.2 contains an overview of the libraries.

As we can see in the table, most implementations support only BDDs and some of

their alternatives. We aim to examine and develop techniques for the analysis of MSS using

MDDs – the examination requires a performant software library supporting MDDs. Since

none of the state-of-the-art C libraries support MDDs, we implemented our open-source

decision diagram library called TeDDy – Templated Decision Diagram library [75], [76] in

the C++ language. The goal of the library is to provide general tools for the creation and

manipulation of BDDs and MDDs with a module dedicated to reliability analysis that utilizes

decision diagrams.

Tab. 3.2 Overview of selected decision diagram packages

Package Language Supported diagrams

BuDDy C, C++ BDD

CUDD C, C++ ADD, BDD, ZDD

Sylvan C, C++ ADD, BDD, ZDD

CUDD (Haskell) Haskell ADD, BDD, ZDD

dd Python BDD, MDD

JDD Java BDD, ZDD

DecisionDiagrams C# BDD

As the name suggests, the library uses the powerful template mechanism of the C++

language to implement core functionalities universally using object-oriented programming

while maintaining runtime performance comparable to state-of-the-art C libraries.

Implementation of the library uses the following layers:

• node representation,

DISSERTATION THESIS

57

• node management,

• diagram management,

• and user-facing interface.

The four-level design of the library can be seen in Fig. 3.8. It allows higher levels to reuse

the core low-level parts of the library – e.g. the management of nodes.

Section 3.1 covers the theoretical aspects of reduced ordered decision diagrams –

describing their characteristic properties and mathematical foundation. However, a diagram

implementation that would just blindly follow the above definitions would not be effective.

Therefore, in the rest of this section, we focus on important aspects of the implementation

of software tools for the creation and manipulation of decision diagrams – focusing on the

implementation of MDDs representing integer functions. A complete implementation of

a decision diagram package needs to address the following problems:

• representation of graph nodes;

• management of graph nodes – node sharing;

• diagram creation – static, dynamic, and direct approaches;

• diagram transformations;

• examination of diagram properties – efficient diagram traversals and

memoization techniques.

Our software library TeDDy implements all the above-mentioned techniques with a focus

on performance and extensibility to allow the implementation of reliability analysis

algorithms on top of the decision diagrams.

In the following chapters and sections of this thesis, we utilize pseudocodes to better

illustrate algorithms and their properties. Some of the pseudocodes describe existing

algorithms while others describe new algorithms, which are contributions of this thesis.

Therefore, to differentiate between the two cases, the existing algorithms are enclosed in

appendix A, while novel algorithms are presented directly in the main sections. Finally,

considering the implementation aspects, the pseudocodes assume, for simplicity, that the

diagrams use the default order of variables i.e., that for an internal node 𝐴 it holds that

INDEX(𝐴) = LEVEL(𝐴).

UNIVERSITY OF ZILINA

58

Fig. 3.8 UML class diagram showing the most important classes on four layers of the TeDDy

library

3.2.1 Node Sharing

The sharing of isomorphic subgraphs within a single diagram is one of its essential

properties. It greatly contributes to the efficiency of the structure and is also one of the

reasons that the diagram is a canonical representation of a function.

Each node in the diagram is unique and thus represents a unique function. The

function represented by a node does not change during the lifetime of the node. The diagram

as a data structure can therefore be regarded as a persistent data structure. However, let us

recall that the actual bytes representing a node may change e.g., during a swap of variables

(section 3.1.5) but the logical meaning of the node (the function it represents) stays the same.

This invariant property allows for more optimizations that we describe further in this section.

DISSERTATION THESIS

59

Fig. 3.9 Three MDDs represent integer functions each containing node representing the same

function

Further improvement of the diagram structure lies in the development of the idea of node

sharing beyond a single diagram. The reason for this is that a node representing a certain

function usually appears in multiple diagrams created separately and thanks to immutability

we are certain that it will always represent the same function. For example, in Fig. 3.9 we

can see that the node marked with the bold outline, representing function 𝑓(𝒙) = 𝑥3, is part

of all three diagrams. Since this is true for other nodes as well, the potential for improvement

of the diagram structure is considerable. Instead of maintaining each node unique within

a single diagram, we manage a graph in which unique nodes are shared across multiple

diagrams. Such a graph has multiple roots (nodes that do not have any incoming edges),

therefore, it is sometimes referred to as a multi-rooted directed acyclic graph in the literature.

Diagrams represented using this technique are called Shared Decision Diagrams – first

proposed for BDDs [77] and later generalized for MDDs [78]. Fig. 3.10 shows the same

diagrams as Fig. 3.9 but represented as shared diagrams – using a single graph. Notice that

the above-mentioned node representing function 𝑓(𝒙) = 𝑥3 is present only once.

UNIVERSITY OF ZILINA

60

Fig. 3.10 Decision diagrams from Fig. 3.9 are represented with a single multi-rooted graph

To maintain the uniqueness of internal nodes, we use a lookup table called unique table. The

key for this table is a pair (𝑖, (𝐴0, 𝐴1, … , 𝐴𝑚𝑖
)) and the value stored in the table is a pointer

to the node 𝐴. For the terminal nodes, we use a similar table in which the key is the value

represented by the terminal node. Such tables are an essential component of every decision

diagram library. It is crucial to avoid the direct creation of new nodes. Instead, it is necessary

to use dedicated factory functions that work with the unique tables. In the following

description, we will refer to the functions as CREATETERMINALNODE (Alg. A.1) and

CREATEINTERNALNODE (Alg. A.2). If we exclusively use the functions to obtain new nodes,

it cannot happen that two isomorphic subgraphs exist in the graph. Let us notice that this

approach is an implementation of the Flyweight design pattern [79].

Section 3.1.3 described MDD as a canonical representation. Such property is closely

tied with a comparison for equality. Comparison following the definition described in

section 3.1.3 involves traversing both diagrams simultaneously and comparing their

structure in the process. Computational complexity of such a process is O(𝓈) where 𝓈 is the

number of nodes in the smaller diagram – in the worst case, we traverse the entire smaller

diagram and find out that diagrams are equal/not equal in the last traversed node.

A representation that requires such exhaustive comparison is known as a weak canonical

form [61]. If nodes are not shared between different diagrams, then diagrams representing

the same function may lie in a different location in the memory. Therefore, we need to

exhaustively compare their structure to check whether they are the same. However, in

a graph of shared diagrams that only contains unique nodes, it is sufficient to compare only

the pointers (identities) of the root nodes since the same functions are necessarily represented

by the same node. Such a representation is known as a strong canonical form [61].

DISSERTATION THESIS

61

3.2.2 Diagram Creation

The unique table and factory functions provide the foundation for the creation of arbitrary

MDD. MDDs can be created using different approaches. In this section, we describe the

main rationale behind each approach, its advantages, and disadvantages. Finally, we show

how some of the approaches can be combined and thus made more efficient.

3.2.2.1 Static Creation

Decision Tree (DT) that we described in section 2.4.4 is a graph structure made of the same

type of nodes as MDD. However, unlike MDD, DT has a simple regular structure, which is

easy to create. Therefore, the static approach starts with the creation of DT representing the

desired function and then transforms it into MDD. To transform DT into MDD we apply the

following steps on all levels of the DT in a bottom-up manner to eliminate redundant and

duplicate nodes:

1. Remove all redundant nodes on the current level. Each edge incoming into

a redundant node will now point to its single son.

2. Create a list of nodes for each group of duplicate nodes on the current level.

a. Select and extract an arbitrary node from each list – these are the new

unique nodes that will stay in the diagram.

b. Each incoming edge into one of the nodes in any of the lists will now

point to the node selected from the list.

3. If all levels have been processed, end, otherwise go to step 1.

The resulting MDD is ordered – it inherits the ordered property from the DT – and is also

reduced, which is guaranteed by step 2. Fig. 3.11 shows an example of the transformation of

a DT representing an integer function into MDD. Bold-outlined nodes mark a list of

duplicate nodes and grayed nodes mark redundant nodes. Note that duplicate terminal nodes

are kept for better readability.

UNIVERSITY OF ZILINA

62

1.

2. 3. 4.

Fig. 3.11 Transformation of a DT into MDD by the gradual elimination of redundant and duplicate

nodes (redundant terminal nodes are removed in the last step for better readability)

The above-described transformation follows Bryant’s description of the reduce

algorithm [11] for BDDs. Unfortunately, the static approach is inefficient because of the size

of the initial DT – which is exponential in the number of variables. The process is also

inefficient due to the considerable number of nodes it initially creates only to be

subsequently removed. There exists a slightly better algorithm for static creation called from-

vector [80]. The input of the algorithm is a truth vector (section 2.4.3) – practically the last

level of the DT. The algorithm works in a similar bottom-up manner, but it avoids the

creation of redundant and duplicate nodes. We provide a pseudocode of the from-vector

algorithm in Alg. A.3.

The static creation is not practical for larger functions due to its exponential

complexity. However, it may be useful for the creation of smaller functions that are easier

to describe using a truth table (truth vector). Such a function can be further processed using

the dynamic approach that we describe later in this section.

DISSERTATION THESIS

63

3.2.2.2 Direct Creation

Diagrams representing certain types of functions have a regular structure that we can utilize

in the creation process. We call this function-specific approach the direct approach. The

advantage of this approach is that it can create the diagram much faster than the general

approaches. We have already encountered the direct approach in the creation of a terminal

node (Alg. A.1) – representing a constant function – and the creation of an internal node

(Alg. A.2). Fig. 3.12 shows an example of diagrams that can be easily created directly.

Fig. 3.12 Simple decision diagrams representing a constant function (left) and an integer function

of a single variable (right)

3.2.2.3 Direct Creation of BDDs

3.2.2.3.1 Logical Conjunction and Disjunction

A very simple diagram type that we can create directly is BDD representing the function of

logical conjunction (𝑓) or logical disjunction (𝑔) of 𝑛 variables defined as:

 𝑓(𝒙) = 𝑥1 ∧ 𝑥2 ∧ … ∧ 𝑥𝑛 (3.4)

 𝑔(𝒙) = 𝑥1 ∨ 𝑥2 ∨ … ∨ 𝑥𝑛. (3.5)

Fig. 3.13 shows BDDs representing functions 𝑓 and 𝑔 respectively. Function (3.4) evaluates

to 1 if and only if all variables have a value of 1 and to 0 otherwise. Similarly, function (3.5)

evaluates to 1 if and only if at least one of the variables has a value of 1 and to 0 otherwise.

This also follows from the fact that 0 is the absorbing element for the logical conjunction

operation and 1 is the absorbing element for the logical disjunction operation. As the figure

shows, BDDs elegantly capture this property. In each internal node, there is a possibility to

go straight to a terminal node if the variable associated with a given node has a value equal

to the absorbing element. We can also see that both BDDs have the same structure, the only

difference is labels on the edges and values in the terminal nodes. Also, note, that variables

in the conjunction and disjunction can be negated. In such a case the only modification is

that we swap outgoing edges of the nodes.

UNIVERSITY OF ZILINA

64

Fig. 3.13 BDDs representing logical conjunction (left) and logical disjunction (right) of 𝑛 Boolean

variables

Functions (3.4) and (3.5) agree with the definitions of series and parallel systems. Therefore,

we can utilize the direct approach in the reliability analysis of such systems [81]. However,

the more interesting use case is the representation of series-parallel systems. The creation of

a decision diagram representing a series-parallel system is an exemplary case where we can

utilize both the dynamic and the direct approach. During the creation, we dynamically merge

directly created diagrams representing series and parallel parts of the system.

Disjunctive Normal Form (DNF) also known as Sum of Products (SoP) is

a commonly used expression representation of the Boolean function [8]. In general, it

consists of logical conjunctions joined by logical disjunctions. The following expression:

 𝑓(𝒙) = 𝑥1𝑥2̅̅ ̅𝑥3 ∨ 𝑥2𝑥3̅̅ ̅ ∨ 𝑥1𝑥2𝑥3̅̅ ̅, (3.6)

shows an example of DNF. To create a BDD for a function defined in the form of DNF we

again can utilize both approaches by first directly creating a BDD for each product and

subsequently dynamically merging them.

3.2.2.3.2 Parity Function

Another Boolean function that has regular representation in the form of BDD is a parity

function of 𝑛 variables [11]. The function is defined using the logical exclusive disjunction

operation (XOR) in the following way:

 𝑓(𝒙) = 𝑥1 ⊕ 𝑥2 ⊕ … ⊕ 𝑥𝑛. (3.7)

DISSERTATION THESIS

65

It evaluates to 1 if and only if an odd number of variables has a value of 1 and to 0 otherwise.

Fig. 3.14 shows BDD representing the odd parity function of 3 variables. Except for the

variable at the root, each variable has exactly two nodes associated with it. As Bryant

notes [11], the diagram has a ladder-like structure. In the figure, we can see that internal

levels are identical for all variables (except the root one). Therefore, to create the diagram

directly we add as many internal levels as necessary.

3.2.2.3.3 Structure 𝒌-out-of-𝒏

A system with 𝑘-out-of-𝑛 structure is a specific system type that we have described in

section 1.3.3. Structure function of such a system evaluates to 1 if and only if at least 𝑘

variables have value of 1. BDD representing the structure function has a regular structure

and, therefore, can be created directly, though, its structure is a bit more complicated.

Parameters 𝑘 and 𝑛 influence the structure of the diagram. At the first 𝑛 − 𝑘 + 1 levels of

the diagram there exists a path starting at the first node on the left of the level that continues

via 1-labeled edges of nodes in the path through the next 𝑘 − 1 levels ending in terminal

node representing the value 1. Fig. 3.14 shows BDD representing 3-out-of-5 BSS (note that

duplicate terminal nodes are kept for better readability). In the figure, we can see that on the

left of the first 3 (in general 𝑛 − 𝑘 + 1) levels a path starts that is terminated at the terminal

node representing the value 1 containing 3 (𝑘 in general) 1-labeled edges.

Fig. 3.14 BDD representing odd parity function of 3 variables (left) and BDD representing

structure function of 3-out-of-5 BSS (right)

UNIVERSITY OF ZILINA

66

𝐾-out-of-𝑛 system is a special case of a more general 𝑘-to-𝑙-out-of-𝑛 system. Such a system

is operation if at least 𝑘 but no more than 𝑙 components are operational. Let us not that such

a system is an example of a noncoherent system (section 1.2.1). We can also directly create

a BDD representing such a system [81], which has a similar just a bit more complicated

structure.

3.2.2.3.4 Symmetric Functions

All the above-mentioned functions have a common property – they are symmetric functions.

Therefore, it is no coincidence the BDDs representing the functions have a regular structure.

In fact, it is a property of a reduced ordered diagram that when it represents a symmetric

function of 𝑛 variable it has some type of a regular structure that has at most O(𝑛2)

nodes [11].

3.2.2.4 Direct Creation of MDDs

3.2.2.4.1 Min and Max Functions

Just like with the functions of logical conjunction (3.4) and logical disjunction (3.5), we can

also create MDDs representing their generalization – the min (𝑓) and max (𝑔) functions:

 𝑓(𝒙) = min(𝑥1, 𝑥2, … , 𝑥𝑛), (3.8)

 𝑔(𝒙) = max(𝑥1, 𝑥2, … , 𝑥𝑛). (3.9)

In Fig. 3.15, we can see MDDs representing integer functions (3.10) and (3.9), in the case

when 𝑚 = 3. Even though the structure looks a bit more complicated than the BDD

counterparts, it is regular and can be created directly. Each internal level except the first level

contains exactly 𝑚 − 1 internal nodes. At each level the edges representing the absorbing

value of the operation lead directly to the terminal node and the rest of the edges lead to the

nodes on the next level. In general, there are 𝑛 ∗ 𝑚 − 1 internal nodes in the diagram.

DISSERTATION THESIS

67

Fig. 3.15 BDDs representing the min function (left) and the max function (right) of 𝑛 integer

variables

3.2.2.4.2 Structure 𝒌-out-of-𝒏

Construction of MDDs representing various types of multi-state 𝑘-out-of-𝑛 systems follows

the same ideas as the simpler case of the BSS (section 3.2.2.3.3). However, their structure is

more complicated – it consists of layers of structures like the structure depicted in

Fig. 3.14 [82] i.e., the regular structure of the diagram can be seen in a three-dimensional

layout. Furthermore, there also exist a few special cases such as 𝑘-out-of-(2𝑘 − 1)

systems [83], which can be represented by an MDD with a regular structure.

3.2.2.5 Dynamic Creation

The static and direct approaches are useful in the creation of specific functions. However,

they are not suitable for general diagram creation. For that, we use the so-called dynamic

approach, which utilizes Shannon’s expansion described in section 3.1.2. The principal idea

is to first split the function into multiple simpler functions joined with binary operations.

Then we start by directly or statically creating diagrams for the simpler functions. After that,

we continue by gradually merging those diagrams into more complicated ones. In the end,

we are left with a single diagram representing the desired function.

3.2.2.5.1 Apply

The merger of two diagrams can be realized using a recursive algorithm called apply

introduced for BDDs by Bryant [11][84] and later generalized for MDDs [12]. The

UNIVERSITY OF ZILINA

68

algorithm uses the following two recursive relations derived from Shannon’s expansions.

For two Boolean functions 𝑓 and 𝑔 and Boolean binary operation ⊙ it holds that [11]:

 (𝑓 ⊙ 𝑔)(𝒙) = 𝑥𝑖(𝑓(1𝑖, 𝒙) ⊙ 𝑔(1𝑖, 𝒙)) ∨ 𝑥𝑖̅(𝑓(0𝑖, 𝒙) ⊙ 𝑔(0𝑖, 𝒙)), (3.10)

and generalized for two integer functions 𝑓 and 𝑔 and binary operation ⊙ it holds that [12]:

(𝑓 ⊙ 𝑔)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (𝑓(𝑘𝑖, 𝒙) ⊙ 𝑔(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

. (3.11)

The input of the apply algorithm is two diagrams and a binary operation ⊙ closed on the

codomain of the function i.e., of the following form:

 {0,1, … , 𝑚 − 1}2 → {0,1, … , 𝑚 − 1}, (3.12)

The algorithm is invoked on the roots of the diagrams. In each step, it visits a pair of nodes

– one from each diagram – and either creates an internal or terminal node. The terminal node

can be created in two situations:

1. When both nodes are terminal in which case the value in the new node is determined

by applying the binary operation ⊙ on the values represented by the nodes.

2. When one of the nodes is a terminal node representing an absorbing element of the

binary operation ⊙. Then, the value in the new node is the absorbing element.

The creation of the terminal node is the terminating case for the recursion.

Most of the time, the nodes that enter the step are both internal nodes (or one of them

is a terminal representing a non-absorbing element). Let 𝐴 and 𝐵 be nodes that entered the

step. Let us assume without loss of generality that 𝑖𝐴 < 𝑖𝐵. If one of the nodes is terminal,

we proceed as if it had the index equal to its level in which case it will certainly be greater

than the other index. The result of the step is a new internal node associated with a variable

𝑥𝑖𝐴
. The 𝑚𝑖𝐴

 sons of the new node are obtained with a recursive call of the step with a pair

(𝐴𝑘, 𝐵) for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1. Alg. A.4 presents complete pseudocode.

An essential part of the apply algorithm is to avoid processing the same pair of nodes

multiple times. If this is satisfied the complexity of the algorithm is O(𝓈1 ∗ 𝓈2) where 𝓈1, 𝓈2

are the sizes of the input diagrams. This can be achieved by maintaining a cache table with

a pair of pointers to nodes that entered the step of the algorithm as key and a pointer to the

node created in the step as value. In each step the cache table is first queried, and if there

already is an entry for the current pair of nodes that node is returned as the result of the step.

The algorithm can be made more efficient thanks to the node sharing and

immutability of nodes (section 3.2.1). The improvement can be made by following the

DISSERTATION THESIS

69

observation that if node 𝐶 is the result of step of the apply call with nodes 𝐴, 𝐵 and operation

⊙ it will also always be the result in the future if the step is called with the same arguments.

Thus, it is beneficial to maintain the cache table globally – shared for all apply calls. The

cache requires a small adjustment in this case. Since apply works for any binary operation,

the operation (unique integer ID) must be part of the key. Therefore, a cache query could

have the following form CONTAINS (𝑎𝑝𝑝𝑙𝑦𝐶𝑎𝑐ℎ𝑒, (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, GETID(⊙))). Since many

binary operations are commutative, further improvement can be made by adjusting the cache

table in such a way that keys (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, GETID(⊙)) and (𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡, GETID(⊙)) map to

the same value. For instance, if we use a hash table to implement the cache, we can utilize

some symmetric function (e.g. bitwise exclusive OR) to combine hashes HASH(𝑙𝑒𝑓𝑡) and

HASH(𝑟𝑖𝑔ℎ𝑡) and adjust the equality comparison so that it compares the key triplets as sets

(i.e. not considering the order of elements). Finally, the last aspect of caching to consider is

the size of the cache table, which could grow significantly for larger diagrams. Because of

this, many implementations use a fixed size for the table. For example, a hash table may

resolve collisions by overwriting existing entries. This can result in re-computation of some

results but provides a reasonable tradeoff with the memory complexity of the algorithm.

Fig. 3.16 shows an example of the apply algorithm in the merger of two BDDs using

the logical conjunction. Nodes of the input diagrams are marked using upper-case letters,

and the nodes of the resulting diagram are marked using a pair of letters, which signifies

nodes from the input diagrams that were processed in the step that created the resulting node.

Fig. 3.16 Merger of two BDDs representing Boolean functions 𝑓(𝒙) = 𝑥1𝑥2̅̅ ̅ (left) and 𝑔(𝒙) = 𝑥2 ∨
𝑥3 (middle) using the apply algorithm with logical conjunction

UNIVERSITY OF ZILINA

70

3.2.2.5.2 ITE and CASE

There exists an alternative to the apply algorithm for Boolean functions – the If-Then-Else

(ITE) operator [61]. ITE is a ternary Boolean operator defined as:

 ITE(𝐴, 𝐵, 𝐶) = 𝐢𝐟 𝐴 𝐭𝐡𝐞𝐧 𝐵 𝐞𝐥𝐬𝐞 𝐶, (3.13)

where 𝐴, 𝐵, and 𝐶 are Boolean functions (nodes of a diagram). Like apply, using the ITE

operator we can create BDD for any function by merging BDDs of simpler functions. Also,

like apply, the merger of diagrams using ITE is a recursive procedure. However, unlike

apply, the ITE operator does not take a Boolean binary operation as its input. Instead, all

Boolean operations can be defined in terms of the ITE operator [60]. Tab. 3.3 contains the

definitions for common Boolean operations.

The ITE operator is limited to BDDs and Boolean functions. A generalization called

CASE exists that can manipulate MDDs and integer functions. CASE is a (𝑚 + 1)-ary

operation defined in a way similar to the generalized Shannon’s expansion (3.2) as [12]:

CASE(𝐴, 𝐵1, 𝐵2, … , 𝐵𝑚−1) = ∑ ({𝐴 ↔ 𝑘} ∗ 𝐵𝑘)

𝑚−1

𝑘=0

. (3.14)

Just like with the ITE operator, we can use the CASE operator to define common

operations such as min and max [85] for an 𝑚-valued logic function. In Tab. 3.4 we show

the definitions for the 4-valued logic function presented in [85]. Generalization to 𝑚-valued

logic is relatively straightforward, thou not as simple as using the apply operation.

Tab. 3.3 Definitions of common Boolean operations in terms of the ITE operator

Name Expression ITE form

Logical negation 𝑎̅ ITE(𝑎, 0,1)

Logical conjunction 𝑎𝑏 ITE(𝑎, 𝑏, 0)

Negated logical conjunction (NAND) 𝑎𝑏̅̅ ̅ ITE(𝑎, 𝑏̅, 1)

Logical disjunction 𝑎 ∨ 𝑏 ITE(𝑎, 1, 𝑏)

Negated logical disjunction (NOR) 𝑎 ∨ 𝑏̅̅ ̅̅ ̅̅ ̅ ITE(𝑎, 0, 𝑏̅)

Exclusive logical disjunction (XOR) 𝑎 ⊕ 𝑏 ITE(𝑎, 𝑏̅, 𝑏)

Tab. 3.4 Definitions of min and max operations in 4-valued MLV using the CASE operator

Name Expression CASE form

Minimum min(𝐴, 𝐵) CASE(𝐴, 0, CASE(𝐵, 0,1,1,1), CASE(𝐵, 0,1,2,2), 𝐵)

Maximum max(𝐴, 𝐵) CASE(𝐴, 𝐵, CASE(𝐵, 1,1,2,3), CASE(𝐵, 2,2,2,3), 3)

DISSERTATION THESIS

71

3.2.3 Extended Apply

The basic apply algorithm described in section 3.2.2 accepts any binary operation of the

form (3.12) as its input. However, in some situations, the functions that we need to represent

contain 𝑑-ary operators. As an example, let us consider a simple logic circuit depicted in

Fig. 3.17, which implements the following Boolean function:

 𝑓(𝒙) = 𝑥1𝑥2𝑥3 ∨ 𝑥4. (3.15)

If we wanted to create BDD representing function (3.15), using the apply algorithm, it would

be called in the following way:

APPLY(APPLY(APPLY(𝑋1, 𝑋2,∧), 𝑋3,∧), 𝑋4,∨),

where symbol 𝑋𝑖 represents BDD representing variable 𝑥𝑖. However, since the AND gate

that realizes the logical conjunction is a three-input gate, it would be more convenient and

descriptive to use the apply algorithm in the following way:

APPLY(APPLY(𝑋1, 𝑋2, 𝑋3,∧), 𝑋4,∨)

i.e., to be able to call apply with three input diagrams instead of two.

Fig. 3.17 Simple combinatorial circuit with four inputs and one output

Any series of applications of binary associative operation ⊙ can be easily extended to

a single 𝑑-ary operation denoted as ⊙𝑑 in the following way:

 𝑓1 ⊙ (𝑓2 ⊙ (… (𝑓𝑑−1 ⊙ 𝑓𝑑) …))

= 𝑓1 ⊙ 𝑓2 ⊙ … ⊙ 𝑓𝑑−1 ⊙ 𝑓𝑑

=⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑).

(3.16)

The 𝑑-ary version ⊙𝑑 of the operation ⊙ is simply defined in terms of multiple applications

of the binary version of the operation. Using the notation ⊙𝑑, we can also express the

relation (3.16) as the following recurrent relation:

UNIVERSITY OF ZILINA

72

 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑘−1, 𝑓𝑑)

=⊙𝑑−1 (𝑓1, 𝑓2, … ,⊙2 (𝑓𝑑−1, 𝑓𝑑))

=⊙𝑑−2 (𝑓1, 𝑓2, … ,⊙2 (𝑓𝑑−2,⊙2 (𝑓𝑑−1, 𝑓𝑑)))

= ⋯

=⊙2 (𝑓1,⊙2 (𝑓2,⊙2 (… ,⊙2 (𝑓𝑑−2,⊙2 (𝑓𝑑−1, 𝑓𝑑)) …))).

(3.17)

Furthermore, we can express the relation (3.11) that is a key part of the apply operation as

follows:

 ⊙2 (𝑓1, 𝑓2)(𝒙)

=⊙2 (𝑓1(𝒙), 𝑓2(𝒙))

= ∑ {𝑥𝑖 ↔ 𝑘} ∗ (⊙2 (𝑓1(𝑘𝑖, 𝒙), 𝑓2(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

.

(3.18)

If expressions 𝑓1, 𝑓2, … , 𝑓𝑑 in formula (3.17) are functions of the same variables defined by

Boolean vector 𝒙, the recurrent relationship defined by formula (3.17) can be transformed

into the following relationship:

 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑)(𝒙)

=⊙𝑑 (𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙))

=⊙𝑑−1 (𝑓1(𝒙), 𝑓2(𝒙), … ,⊙2 (𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙)))

= ⋯

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙)) …))

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) …)(𝒙)).

(3.19)

By combining this formula with formula (3.18), we obtain:

⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑)(𝒙)

= ⋯

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) …)(𝒙))

= ∑ {𝑥𝑖 ↔ 𝑘} ∗ (⊙2 (𝑓1(𝑘𝑖, 𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) …))(𝑘𝑖, 𝒙))

𝑚𝑖−1

𝑘=0

= ∑ {𝑥𝑖 ↔ 𝑘} ∗

𝑚𝑖−1

𝑘=0

(⊙2 (𝑓1(𝑘𝑖, 𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1(𝑘𝑖, 𝒙), 𝑓𝑑(𝑘𝑖, 𝒙)) …))).

(3.20)

DISSERTATION THESIS

73

Finally, according to (3.16), nested parentheses in (3.20) can be removed by replacing the

prefix operator ⊙2 by the infix version ⊙. This results in an extended version of the

relation (3.11):

⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

. (3.21)

Using this relation, we present a novel extended version of the apply algorithm, which

accepts 𝑑-tuple of diagrams and 𝑑-ary operation. The algorithm is one of the contributions

of this thesis. The new version is similar to the apply algorithm described in section 3.2.2.

The key difference is that in each step it visits 𝑑-tuple of nodes, one from each diagram.

Alg. 3.1, Alg. 3.2, and Alg. 3.3 contains the complete pseudocode of the extended apply. In

the pseudocode, functions like ROOT, VALUE, INDEX, or the auxiliary GETSON applied on the

tuple operate on each element of the tuple separately returning a tuple of individual results.

procedure EXTENDEDAPPLY((D1, D2, ..., Dd), ⊙d)

 root ← EXTENDEDAPPLYSTEP(ROOT((D1, D2, ..., Dd)), ⊙d)

 return MDD(root)

end procedure

Alg. 3.1 Entry point of the extended apply algorithm

procedure EXTENDEDAPPLYSTEP((N1, N2, ..., Nd), ⊙d)

 if CONTAINS(applyCache, (N1, N2, ..., Nd)) then

 return LOOKUP(applyCache, (N1, N2, ..., Nd))

 end if

 node ← NULL

 if ALLTERMINAL((N1, N2, ..., Nd)) then

 node ← CREATETERMINALNODE(⊙d(VALUE((N1, N2, ..., Nd))))

 else if ANYABSORBING(⊙, (N1, N2, ..., Nd)) then

 node ← CREATETERMINALNODE(ABSORBINGELEMENT(⊙))

 else

 i ← min(LEVEL((N1, N2, ..., Nd)))

 sons ← MAKETUPLE(mi)

 for k = 0 to mi do

 sons[k] ← EXTENDEDAPPLYSTEP(GETSON(i, (N1, N2, ..., Nd), k), ⊙d)

 end for

 node ← CREATEINTERNALNODE(i, sons)

 end if

 PUT(applyCache, (N1, N2, ..., Nd), node)

 return node

end procedure

Alg. 3.2 Recursive step of the extended apply algorithm

UNIVERSITY OF ZILINA

74

procedure GETSON(i, node, k)

 if INDEX(node) = i then

 return SON(node , k)

 else

 return node

 end if

end procedure

Alg. 3.3 Helper function used in the step of the extended apply algorithm

The extended apply algorithm gives the same results as multiple calls of the basic apply

algorithm. Its main advantage is the convenience – a single call to the extended apply can

replace multiple nested calls to the basic apply. On the other hand, its disadvantage may lie

in its complexity, which is O(𝓈1 ∗ 𝓈2 ∗ … ∗ 𝓈𝑑), since, in the worst case, we process each 𝑑-

tuple of nodes.

The big-O notation sets the upper bound on the number of steps of the algorithm,

which may not necessarily reflect the real performance of the algorithm. Therefore, an

experimental comparison of the apply and extended apply is an interesting task. Furthermore,

the comparison may also provide insight into the feasibility of the extended apply since its

heavy utilization of the recursion may be limited by the default size of the call stack.

3.2.4 Diagram Manipulation

Diagrams can be queried, evaluated, and manipulated in various ways. In this section, we

describe selected diagram algorithms that we use later in the description of algorithms for

reliability analysis.

3.2.4.1 Satisfy-count

The first algorithm that we describe is called satisfy-count introduced by Bryant [11] for

BDD. We describe a version generalized to MDD. Satisfy-count is a simple query on the

diagram that returns the number of satisfying variable assignments i.e., if the diagram

represents a function 𝑓 the algorithm returns the number of input vectors 𝒙 such that 𝑓(𝒙) =

𝑗 where the diagram and the value 𝑗 are parameters of the algorithm.

DISSERTATION THESIS

75

Fig. 3.18 Evaluation of a function represented by a decision diagram

The pseudocode of the algorithm is presented in Alg. A.5. To understand the rationale of the

algorithms first let us consider a simpler algorithm that only counts the number of paths from

the root node to the terminal node containing the value 𝑗. Each internal node on a path from

the root node to a terminal node represents all possible values of the variable 𝑥𝑖. Therefore,

the number of paths starting at a given internal node can be calculated as the sum of the

number of paths starting at each son of the node. However, an edge can skip over some levels

and therefore a single path can correspond to multiple input vectors, as we can see in

Fig. 3.18. In the figure, the highlighted path corresponds to three state vectors. Thus, to

account for the skipped levels, we need to multiply the number obtained from the son by the

number of vectors corresponding to skipped levels. In the pseudocode, this number is

calculated by the DOMAINPRODUCT function.

3.2.4.2 Cofactor

We have encountered cofactor (3.2) in the definition of the decision diagram and the apply

algorithm for its dynamic creation. However, in neither of these situations, we were required

to calculate the cofactor of a function directly. Nevertheless, the calculation of the cofactor

of a function is an essential step in various algorithms – for example, in the calculation of

logic derivatives described further in section 3.3.4.

UNIVERSITY OF ZILINA

76

The cofactor algorithm for MDD is a generalization of the restrict2 algorithm

proposed by Bryant [11] for BDD. Computation of cofactor 𝑓(𝑎𝑖, 𝒙) is a simple

transformation of the diagram. The core idea is to remove all internal nodes associated with

variable 𝑥𝑖 and redirect all edges ending in such nodes into its 𝑎th son (where 𝑎 ∈

{0,1, … , 𝑚𝑖 − 1}). However, the operation must maintain the invariants of node uniqueness

and node immutability. Therefore, the algorithm produces a new diagram representing the

cofactor without altering the original diagram. The new diagram, however, may share many

nodes with the original. The pseudocode of the algorithm is presented in Alg. A.6.

In Fig. 3.19, we can see an example of MDD representing function 𝑓(𝒙) and MDD

representing the cofactor 𝑓(21, 𝒙). The grey node in the right part of the image highlights

the difference between the original MDD and its cofactor.

Fig. 3.19 MDD representing function 𝑓(𝒙) (left) and MDD representing cofactor 𝑓(21, 𝒙)

The basic version of the cofactor algorithm presented in the pseudocode fixes the value of

only one variable at a time. However, in some situations, we need to fix the value of multiple

variables. This can be achieved by simply using the cofactor algorithm multiple times.

Unfortunately, such an approach would result in repetitive re-computations. A much better

approach is to generalize the cofactor algorithm so that it accepts a list of pairs (𝑖, 𝑎). The

generalized version works in a very similar way with the difference that it “skips” nodes on

multiple levels – specified in the list of pairs.

2 Cofactor of a function is also known as restriction of a function in some literature – hence the name

of Bryan’s algorithm

DISSERTATION THESIS

77

3.2.4.3 Transform

Another algorithm that we utilize in the calculation of logic derivatives is the transform

algorithm. This algorithm operates on the values of the function stored in the terminal nodes,

transforming them using function 𝛾 of the following form:

 𝛾(𝑎): {0,1, … , 𝑚 − 1} → {0,1, … , 𝑚 − 1}, (3.22)

where 𝑎 ∈ {0,1, … , 𝑚 − 1}. Just like the cofactor algorithm, the transform algorithm’s core

part is a recursive step. The pseudocode of the algorithm is presented in Alg. 3.4 and

Alg. 3.5. Implementation of the step is rather simple. When it visits an internal node it simply

recurses deeper into the diagram and afterward creates a new node. The transformation

happens when the step visits a terminal node 𝐴 in which case its returns new terminal node

representing value 𝛾(𝐴).

The transform algorithm can be used to implement various unary operations [9] such

as complement, successor, or predecessor. For example, to define the complement of

an integer function we would use the function 𝛾1 defined as:

 𝛾1(𝑎) = 𝑚 − 1 − 𝑎. (3.23)

Fig. 3.20 depicts an example of an MDD representing an integer function and an MDD

representing the complement of the function obtained using the transform algorithm.

Another frequent use case is when we need to narrow the codomain of a function – for

instance, to transform it into a pseudo-logic function (2.5). In such a case, we may use the

following 𝛾2 function (possibly with any other relational operator):

𝛾2(𝑎) = {

1, 𝑎 ≥ 𝑗
0, otherwise,

 (3.24)

where 𝑗 ∈ {0,1, … , 𝑚 − 1}.

Finally, the last, less obvious, use case that we present is in the implementation of

the reduce algorithm [11]. The reduce algorithm transforms any MDD that contains

duplicate or redundant nodes into canonical form by “removing” all such nodes. The

algorithm can be implemented using the transformation with the identity function defined

as:

 𝛾3(𝑎) = 𝑎. (3.25)

The resulting diagram contains no duplicate and no redundant nodes thanks to the

factory functions (Alg. A.1, Alg. A.2), since each node is re-created by the functions – which

only produce unique nodes.

UNIVERSITY OF ZILINA

78

Fig. 3.20 MDD representing an integer function (left) and MDD representing complement of the

function (right)

Let us note that the same transformation of an MDD can be achieved by using the

apply algorithm with a binary operation and an MDD representing a constant function with

a value equal to the neutral element of the binary operation. However, we consider such

a solution less efficient and less readable. Thus, we present the pseudocode directly in this

section although the algorithm itself and ideas it utilizes are not exactly novel.

procedure TRANSFORM(diagram, γ)

 root ← ROOT(diagram)

 newRoot ← TRANSFORMSTEP(root, γ)

 return MDD(newRoot)

end procedure

Alg. 3.4 Entry point of the transform algorithm

procedure TRANSFORMSTEP(node, γ)

 if ISTERMINAL(node) then

 return CREATETERMINALNODE(γ(VALUE(node)))

 end if

 if CONTAINS(memo, node) then

 return LOOKUP(memo, node)

 end if

 i ← INDEX(node)

 sons ← MAKETUPLE(mi)

 for k = 0 to mi do

 oldSon ← SON(node, k)

 sons[k] ← TRANSFORMSTEP(oldSon, γ)

 end for

 newNode ← CREATEINTERNALNODE(j, sons)

 PUT(memo, node, newNode)

 return newNode

end procedure

Alg. 3.5 Recursive step of the transform algorithm

DISSERTATION THESIS

79

3.2.4.4 General Diagram Manipulation

When we analyze the pseudocodes of the cofactor and transform algorithms, we may notice

that their step has a similar structure – which is no coincidence. As a matter of fact, we would

see a similar structure in the implementation of other algorithms as well. In Alg. 3.6 we

present a pseudocode that tries to capture a general structure of a recursive diagram

transforming the algorithm.

In the pseudocode, there are a few conditions that terminate the recursion. The first

one (denoted as (a)) deals with memoization, which we address below. The second one

(denoted as (b)) identifies a situation that does not require further evaluation – the

identification of the situation is checked by the function NONEEDTOCONTINUE. An example

of such a situation can be found in the cofactor algorithm (Alg. A.6). The third point

(denoted as (c)) is checked by the NEEDSPROCESSING function, which identifies nodes that

require some transformation, which is expressed by the PROCESS function. At this point, the

processing function can terminate the recursion (as we do in the pseudocode) or the

processing of the diagram may continue – depending on the specifics of the algorithm.

Finally, let us note the presented general algorithm does a transformation of the node

that entered the step. However, the result of the step does not necessarily need to modify the

node (more precisely, to return a new node). It can also just compute and return some value

like the satisfy-count algorithm (Alg. A.5) does.

procedure GENERALSTEP(node, ...)

 if CONTAINS(memo, node) then ▷ (a)

 return LOOKUP(memo, node)

 end if

 if NONEEDTOCONTINUE(node) then ▷ (b)

 return node

 end if

 if NEEDSPROCESSING(node) then ▷ (c)

 return PROCESS(node)

 end if

 i ← INDEX(node)

 sons ← MAKETUPLE(mi)

 for k = 0 to mi do

 oldSon ← SON(node, k)

 sons[k] ← GENERALSTEP(oldSon, ...)

 end for

 newNode ← CREATEINTERNALNODE(j, sons)

 PUT(memo, node, newNode)

 return newNode

end procedure

Alg. 3.6 General structure of a step of a recursive diagram manipulation algorithm

UNIVERSITY OF ZILINA

80

3.2.4.4.1 Result Memoization

Considering the efficiency of the algorithm utilizing the step, the essential part of the step is

the memoization of the results. Since the nodes are immutable, the step must always return

the same result for the same input node3. The step of the algorithm may try to visit some

nodes more than once because of the node sharing. Consequently, to avoid expensive

recomputations that would necessarily lead to the same result we maintain a lookup table of

computed results – a memo. A key to the table is a pointer to the input node and the value is

either a pointer to a new node or some numeric value – depending on the specifics of the

actual algorithm. Our library TeDDy also implements an alternative to the lookup table – it

uses the nodes themselves to store the results of the computation at the given node.

The memoization ensures that each node is processed at most once. Therefore, the

computation complexity of the algorithm is O(𝓈 ∗ 𝔬 ∗ 𝓉), where 𝓈 is the number of nodes in

the diagram, O(𝔬) is the complexity of the node processing, and O(𝓉) is the complexity of

querying the table. Typically, the complexity of the node processing operation is O(1). The

complexity of the table query depends on the implementation of the table. For example,

when a hash table is used, the complexity is also O(1). Our approach of storing the

memoized result in the nodes also has complexity O(1). Consequently, the complexity of

the algorithm is practically O(𝓈).

3.2.4.4.2 Order of Variables

In all pseudocodes, we assumed – for simplicity – that the diagram uses the default order of

variables. However, when we consider other orders of variables, we need to differentiate

INDEX(𝐴) and LEVEL(𝐴). A possible approach is to also store the level of a node as its

property. However, such an approach would use more memory than necessary. Since there

is a close relation between the level and index of nodes on that level, it is sufficient to

maintain two mappings – level-to-index and index-to-level, which can be simply

implemented as arrays where the index corresponds to level and index respectively.

3 With the assumption that the step is not part some randomized algorithm – neither of the algorithms

that we consider in the thesis involve randomness.

DISSERTATION THESIS

81

3.3 Decision Diagrams in Reliability Analysis

The structure function is an integral part of the reliability analysis. Definitions (1.1), (1.2),

and (1.3) of the structure function agree with definitions (2.2), (2.3), and (2.4) of different

discrete functions. Thus, an obvious application of decision diagrams is the representation

of the structure function. In this section, we describe the evaluation of selected reliability

characteristics of a system using the structure function represented by a decision diagram.

3.3.1 Structure Function Representation

The typical approach to the representation of the structure function is to represent the

function with a single MDD. In section 3.2.2 and section 3.2.3, we have presented various

approaches to the construction of the MDD. The diagram construction is a crucial aspect of

the reliability analysis of complex systems, because of the considerable size of the diagram.

Besides the straightforward approach to the structure function representation, there

exists an alternative option for the description of MSS. The idea is to describe each system

state individually using a pseudo-logic function [86]. For example, let us consider a structure

function 𝜙(𝒙) describing a 3-state MSS. Then we can use two functions 𝜙(𝒙) ≥ 1 and

𝜙(𝒙) ≥ 2 to fully describe the system. In general, for an 𝑚-state MSS, we need to use 𝑚 −

1 functions describing states 1,2, … , 𝑚 − 1. In Fig. 3.21 we can see an example of a structure

function describing 3-state MSS represented using both approaches.

Fig. 3.21 Structure function 𝜙(𝒙) represented using a single diagram (left) and a series of diagrams

(right) representing functions 𝜙(𝒙) ≥ 1 and 𝜙(𝒙) ≥ 2 respectively (right)

UNIVERSITY OF ZILINA

82

An interesting question is whether one of the approaches is more efficient with regard to the

number of unique nodes in the diagrams or the speed of algorithms operating on the

diagrams.

3.3.2 Topological Analysis

System state frequency 𝐹𝑟=𝑗 (1.9) is a simple topological characteristic of a system. It is

defined as the relative number of state vectors for which the system described by structure

function 𝜙 is in state 𝑗:

 𝐹𝑟=𝑗 =
𝛼𝜙,𝑗

𝛼𝜙
, (3.26)

where 𝛼𝜙 denotes the total number of state vectors i.e., the size of the domain of the function

(Tab. 2.1), and 𝛼𝜙,𝑗 denotes the number of state vectors 𝒙 such that 𝜙(𝒙) = 𝑗. Therefore, to

calculate the state frequency we need to calculate the numbers 𝛼𝜙,𝑗 and 𝛼𝜙. 𝛼𝜙 can be

calculated by simply multiplying the domains of all variables:

𝛼𝜙 = ∑ 𝑚𝑖

𝑛

𝑖=1

, (3.27)

which simplifies to:

 𝛼𝜙 = 𝑚𝑛, (3.28)

for the 𝑚-valued logic function.

A straightforward approach to the calculation of 𝛼𝜙,𝑗 would be to evaluate the system

for each possible state vector and count the number of satisfying input vectors. However,

such a naive approach would be computationally infeasible even for tens of variables.

Evaluation of the diagram is a simple traversal from the root to a terminal node as

shown in Fig. 3.18. In general, the number of state vectors corresponding to a path 𝓅 can be

calculated using the following formula:

 𝛼𝓅 = ∏ 𝑚𝑖

𝑖∈ℐ𝓅
′

,
(3.29)

where ℐ𝓅
′ is the set of indices of variables that are not present in path 𝓅. Therefore,

an improvement to the calculation can be made by using the following formula:

𝛼𝜙,𝑗 = ∑ 𝛼𝓅

𝒫𝑗

𝓅

, (3.30)

DISSERTATION THESIS

83

where 𝒫𝑗 is the set of all paths leading to the terminal node representing value 𝑗.

Unfortunately, even the improved approach does not scale well since the number of possible

paths is still considerable – it may depend on the number of variables exponentially.

Fortunately, it is possible to count the number of satisfying input vectors – which, in

our case, is equivalent to the number of state vectors – of an integer function represented by

MDD using the satisfy-count algorithm described in section 3.2.4.

The solution utilizing the satisfy-count algorithm is efficient with respect to the

number of nodes – the complexity of the algorithm is O(𝓈) where 𝓈 is the number of nodes

in the diagram. However, it has a technical limitation. The number 𝛼𝜙,𝑗 can be very large

even for tens of variables. The problem is that many programming languages are limited by

the finite precision of their numeric types – typically 64-bit integers. The problem can be

addressed by using a library for multiple precision arithmetic such as GMP [87].

Nevertheless, the computation for larger functions – containing hundreds or thousands of

variables – would involve computation with huge numbers and therefore could be time-

consuming.

This problem can be partially addressed in the case of BSS analysis. A modification

of the satisfy-count algorithm exists called satisfy-count-ln4, which – as the name suggests –

calculates the logarithm of the number of satisfying input vectors i.e., the number log2 𝛼𝜙,𝑗.

Since the algorithm works with logarithms, it is not susceptible to integer overflows.

Knowing the logarithm log2 𝛼𝜙,𝑗, we can subsequently calculate the state frequency by

rewriting the definition (3.26) in terms of logarithms in the following way:

 𝐹𝑟=𝑗 =
𝛼𝜙,𝑗

𝛼𝜙

=
2log2(𝛼𝜙,𝑗)

2log2(𝛼𝜙)

= 2log2(𝛼𝜙,𝑗)−log2(𝛼𝜙)

= 2log2(𝛼𝜙,𝑗)−log2(2𝑛)

= 2log2(𝛼𝜙,𝑗)−𝑛.

(3.31)

4 Implemented in BuDDy BDD package [68]

UNIVERSITY OF ZILINA

84

The above solution does not scale to MSS – especially nonhomogeneous MSS. One of the

reasons is that the denominator 𝛼𝜙 is a product (3.27) that cannot be simplified to single

exponentiation and therefore cannot be further simplified using logarithm. The key to

efficient calculation is to avoid the computation of the number of state vectors altogether.

We propose a simple general algorithm that can be used to analyze nonhomogeneous MMS,

and consequently homogeneous MSS and BSS. The algorithm follows the general structure

of diagram manipulation (Alg. 3.6). Its pseudocode is presented in Alg. 3.7 and Alg. 3.8.

The algorithm itself is a simplified version of the probabilistic algorithms described further

in section 5.1.

procedure STATEFREQUENCY(diagram, j)

 root ← ROOT(diagram)

 frequency ← STATEFREQUENCYSTEP(root, j)

 return frequency

end procedure

Alg. 3.7 Entry point of the state-frequency algorithm

procedure STATEFREQUENCYSTEP(node, j)

 if ISTERMINAL(node) ∧ VALUE(node) = j then

 return 1.0

 end if

 if ISTERMINAL(node) ∧ VALUE(node) ≠ j then

 return 0.0

 end if

 if CONTAINS(memo, node) then

 return LOOKUP(memo, node)

 end if

 frequency ← 0.0

 i ← INDEX(node)

 for k = 0 to mi do

 son ← SON(node, k)

 sonFrequency ← STATEFREQUENCYSTEP(son)

 frequency ← frequency + sonFrequency ∗ (1 / mi)

 end for

 PUT(memo, node, frequency)

 return frequency

end procedure

Alg. 3.8 Recursive step of the state-frequency algorithm

Our algorithm is general and therefore there is no need to use the specialized version that

utilizes satisfy-count-ln for BSS. Furthermore, our algorithm uses only addition and

multiplication whereas the other one uses exponentiation and logarithms extensively. This

suggests that our algorithm should perform better in the case of BDD. Nevertheless, an

experimental comparison of the two algorithms is needed to confirm this assumption.

DISSERTATION THESIS

85

3.3.3 Probabilistic Analysis

In section 1.5 we described probabilistic analysis as a more precise way to analyze a system

since, in addition to the system topology, it also considers the reliability of its components.

Therefore, the input of algorithms for the probabilistic analysis is the diagram representing

the structure function and the component state probabilities (1.14).

One of the fundamental tasks of probabilistic analysis is the calculation of system

state probabilities. This task involves the evaluation of the probability that the structure

function 𝜙(𝒙) evaluates to value 𝑗. System state probability is closely tied to system

availability (1.19) and unavailability (1.20) – one can be computed in terms of the other.

Calculation of various importance measures also involves the evaluation of the probability

that a derivative of the structure function evaluates to 1. Hence, the fundamental algorithm

for the probabilistic analysis is the algorithm that calculates the probability that a function

represented by MDD evaluates to value 𝑗 given component state probabilities (1.14).

The probability that MDD evaluates to value 𝑗 agrees with the so-called Node

Traversing Probability (NTP) [48] of the terminal node representing value 𝑗. Before we

proceed with the calculation of NTP, we first need to consider path probability. Recall that

a path is an alternating sequence of internal nodes and edges that lead to a terminal node.

For the calculation, let us view the path as a sequence of pairs (𝑖𝑙, 𝑘𝑙) where 𝑖𝑙 is the index

of variable associated with 𝑙th internal node and 𝑘𝑙 is the edge we chose in the 𝑙th internal

node. Assuming that the component state probabilities are independent we can calculate the

path probability 𝜌 of path 𝓅 as [48]:

 𝜌𝓅 = ∏ 𝑝𝑖,𝑘,
(𝑖,𝑘)∈𝓅

 (3.32)

we calculate the NTP of a terminal node 𝑇𝑗 as the sum of path probabilities leading to 𝑇𝑗 as:

NTP(𝑇𝑗) = ∑ 𝜌𝓅 .

𝒫𝑗

𝓅

 (3.33)

Definition (3.32) shows that we can associate component state probabilities with edges in

the MDD. We refer to such MDD as probabilistic MDD (Fig. 3.22). Considering the

implementation of the MDD, it would not be efficient to store the probabilities directly in

the edges – the same information would be stored multiple times. Therefore, the

implementations typically store the probabilities in a matrix ℙ𝑛,𝑚. Nevertheless, the

visualization of probabilistic MDD is good for understanding probabilistic calculations.

UNIVERSITY OF ZILINA

86

Fig. 3.22 Probabilistic decision diagram with component state probabilities attached to edges

In section 3.3.2 we have shown that calculation involving enumeration of all possible paths

is not effective. Thus, an efficient evaluation of NTP(𝑇𝑗) needs a more sophisticated

approach. In section 5.1, we describe two principal approaches to the calculation along with

their use cases and experimental comparison.

Furthermore, so far in this section we only described the time-independent version

of the probabilistic analysis. Therefore, in section 5.2, we discuss how to adjust existing

algorithms for the time-independent analysis to use them with time-dependent probabilities.

3.3.4 Logic Derivatives

Logic derivative is an essential tool for the calculation of different reliability characteristics

– mostly for the calculation of various importance measures as described in section 2.3.

Therefore, the calculation of the logic derivative of the function represented by MDD is

another fundamental task of reliability analysis.

A straightforward approach to the calculation is to follow the definition of the

derivative. However, different types of derivatives exist (introduced in section 2.2.2) – each

with a slightly different definition. For the moment, let us consider the directional logic

derivative (2.12). Alg. 3.9 contains pseudocode for the calculation of the derivative using

diagram manipulation algorithms introduced in section 3.2.4. Notice that the code simply

calls algorithms corresponding to operations used in the definition. The notation of the

second argument of the TRANSFORM algorithm (= 𝑗) denotes a single-parameter function that

returns true if the parameter is equal to 𝑗 and false otherwise. This is known as partial

function application [88] – the original function being the two-parameter equals (=)

function. Also, notice that we can merge the diagrams using logical conjunction ∧ since the

DISSERTATION THESIS

87

call to the transform algorithm ensures that both diagrams have Boolean-valued output.

Fig. 3.24 shows a specific example of the calculation of the derivative using the algorithm

Alg. 3.9.

procedure DPLD(diagram, i, j, h, s, r)

 before ← COFACTOR(diagram, i, s)

 after ← COFACTOR(diagram, i, r)

 before’ ← TRANSFORM(before, (= j))

 after’ ← TRANSFORM(after, (= h))

 result ← APPLY(before’, after’, ∧)

 return result

end procedure

Alg. 3.9 Calculation of directional logic derivative

Let us consider one more example using the same approach – the calculation of the integrated

directional logic derivative of type II (2.19). The pseudocode for this calculation can be

found in Alg. 3.10. Its structure is very similar to Alg. 3.9, the only difference is that it does

not involve any transformation of the diagrams and that it uses the greater than > operator

to merge the diagrams.

procedure IDPLDTYPEII(diagram, i, s, r)

 before ← COFACTOR(diagram, i, s)

 after ← COFACTOR(diagram, i, r)

 result ← APPLY(before, after, >)

 return result

end procedure

Alg. 3.10 Calculation of integrated directional logic derivative of type II

Fig. 3.23 Fig. 3.24 and show an example of the calculation of DPLD of type I using the

approach described by Alg. 3.9. We could use a similar approach to calculate the other

derivatives introduced in section 2.2.2. The derivatives can be used to evaluate various

system characteristics such as MCVs [89] or IMs such as SI [41]. Furthermore, in

conjunction with component state probabilities, we can evaluate more IMs such as BI [41]

and use further transformations of the derivative to calculate FVI [43], [44]. Consequently,

we can see that decision diagrams and logic derivatives provide a comprehensive framework

for the reliability analysis of complex systems.

UNIVERSITY OF ZILINA

88

𝜙(𝒙) 𝜙(01, 𝒙) 𝜙(11, 𝒙)

diagram before after

Fig. 3.23 MDDs representing structure function and intermediate diagrams used in the calculation

of directional logic derivative

𝜙(01, 𝒙) = 0 𝜙(11, 𝒙) = 1

𝜕𝜙(0 → 1)

𝜕𝑥1(0 → 1)

before’ after’ result

Fig. 3.24 MDDs representing intermediate diagrams and resulting diagram representing the

directional logic derivative

We have presented a basic approach to the calculation of logic derivatives. As long as we

have an MDD of reasonable size representing the structure function, the calculation of the

derivative is also reasonably efficient. The most expensive step of the calculation is the call

to the apply algorithm (refer to section 3.2.4). However, even with the two presented

examples, we may have noticed that the calculation is almost identical. Hence, in section 4.5

we present a single universal algorithm for the calculation of any derivative along with an

experimental comparison with the basic approach.

DISSERTATION THESIS

89

3.4 MDD-Related Tasks Open for Investigation

In section 3.3, we established the principal steps of the reliability analysis using decision

diagrams. The steps can be summarized as follows:

• construction of the structure function;

• creation of decision diagrams;

• adjustments and transformations of the diagrams;

• evaluation of the diagrams;

• and interpretation of the results.

The listed problems involve several challenges in the context of analysis of complex

systems. Consequently, we have identified multiple research problems that address the

challenges. Some of the problems involve experimental comparison of existing algorithms

in different use cases whilst others require an introduction of new algorithms or

enhancements of existing algorithms. Specifically, we have identified the following research

problems:

• generating random decision diagrams representing structure functions – required

for exhaustive experimental comparisons;

• order of diagram merging and its influence on the speed of diagram creation

(section 3.3.1);

• different ways of representation of a structure function of a series-parallel system

and their influence on the size of the diagram (section 3.3.1);

• experimental comparison of our algorithm for the calculation of state frequency

with alternative approaches for BDDs (section 3.3.2);

• introduction of a new universal algorithm for the calculation of logic derivatives

and experimental comparison with existing approaches (section 3.3.4);

• experimental comparison of existing algorithms for the probabilistic evaluation

of decision diagrams (section 3.3.3);

• adjustment of existing algorithms for probabilistic evaluation of decision

diagrams with time-dependent probabilities (section 3.3.3).

DISSERTATION THESIS

91

4 Efficient Diagram Creation and Manipulation

The structure function is an integral part of the reliability analysis process. Considering that

complex systems consist of numerous components it is essential to represent them

efficiently. In this thesis, we focus on decision diagrams, which have proven to be a suitable

structure for the task [44], [81], [90]. However, even though the diagrams are efficient, their

size can be considerably high for large systems. Therefore, it is important to develop

algorithms and approaches that can speed up diagram creation and manipulation.

4.1 Generating Random Diagrams

Chapter 4 and Chapter 5 deal with efficient diagram manipulation, which involves

a considerable number of experimental comparisons. A comparison should be done, ideally,

on diagrams with different structures and sizes. Therefore, in this section, we describe the

methods we use for the generation of random decision diagrams.

4.1.1 Min-Max Expressions

The first approach is based on SoP expressions, specifically, on their generalized form where

the logical conjunction is generalized using the min function and logical disjunction using

the max function. The reason for this choice of generalization is that it is commonly used in

the description of series-parallel systems (section 1.3.1). Another reason is that it is easy to

represent and generate such expressions. For example, let us consider the following

expression:

 𝑓(𝒙) = max(min(𝑥1, 𝑥2, 𝑥3), min(𝑥1, 𝑥3, 𝑥4), min(𝑥2, 𝑥3, 𝑥4)). (4.1)

We can represent the expression conveniently using the following list of lists of integers:

[[1,2,3], [1,3,4], [2,3,4]].

Furthermore, we can also generate such a list conveniently by generating random integers

from the range [1,2, … , 𝑛) where 𝑛 is the number of variables. The algorithm for the

generation has the following parameters:

• number of terms – the number of nested lists;

• size of a term – the number of variables in a single term;

• 𝑛 – the number of variables;

• type of the function:

• Boolean,

UNIVERSITY OF ZILINA

92

• MVL – requires additional parameter 𝑚,

• or integer – requires additional parameters 𝑚 and 𝑚𝑖 for 𝑖 = 1,2, … , 𝑛.

Subsequent creation of a diagram from such an expression is straightforward. We start by

creating a diagram representing each nested list using the min operation and then we proceed

with the merge of the diagrams using the max operation. This process is also known as fold,

which we describe in section 4.2.1.2.

4.1.2 Series-Parallel Trees

The min-max approach is suitable for generating general MDDs. The average size of the

generated MDD can be influenced by adjusting values of the parameters e.g., the number of

terms or size of a term. A possible drawback of the approach is that generated MDDs do not

correspond to the structure function of specific system types. Therefore, the second approach

that we use – which we call the series-parallel trees approach – aims to generate MDDs

representing structure functions of series-parallel systems (section 1.3.2).

To generate such MDD, we use the same process as with the min-max expression.

We start by generating a description of the system, which we subsequently transform into

MDD. The description that we chose for the series-parallel system is the Abstract Syntax

Tree (AST), which we briefly described in section 2.4.1. As an example, let us consider the

series-parallel system depicted in Fig. 1.4 and let us assume that we use the min and max

functions to describe series and parallel connections respectively. In Fig. 4.1, we can see

AST representing the system.

Fig. 4.1 AST representing series-parallel system depicted in Fig. 1.4

Creation of the diagram from an AST can be done in a simple post-order traversal of the

tree. In terminal nodes of the tree, we create diagrams representing given variables, and in

internal nodes, we merge diagrams created in the traversal of the sons using the apply

algorithm with min or max operation. We also use a recursive procedure to generate the

DISSERTATION THESIS

93

AST itself. The procedure has a single parameter 𝑛 – the number of variables that the tree

(subsystem) should contain. The terminating case of the recursion is when the value of the

parameter is 1, in which case we create a diagram representing the variable with the next

index from a sequence, which must be shared amongst all recursive calls. In the non-

terminating case, we:

• split the number of variables 𝑛 in half (or in any other ratio),

• randomly choose either min or max operation,

• generate sons of the new node using a recursive call,

• and finally return a new internal node.

In Alg. 4.1 we can see a pseudocode of the above procedure.

procedure GENERATERANDOMAST(n)

 if n = 1 then

 return NODE(NEXTINDEX())

 end if

 op ← SELECTRANDOMELEMENT({min, max})

 leftSize ← n/2

 rightSize ← n − leftSize

 left ← GENERATERANDOMAST(leftSize)

 right ← GENERATERANDOMAST(rightSize)

 node ← NODE(op, left, right)

 return node

end procedure

Alg. 4.1 Recursive procedure for the generation of random AST representing a series-parallel

system

4.2 Improvement of Dynamic Creation

4.2.1 Order of Evaluation

4.2.1.1 Left Fold and Tree Fold

The creation of decision diagrams can be a complicated process that can be approached in

several ways – some of which we describe in section 3.2.2. Each approach has its use case,

but the dynamic creation using the apply algorithm plays a pivotal role. During the creation,

we often encounter a situation when we need to merge several diagrams (sequence of

diagrams) using an associative operation ⊕. A typical example of this situation is

the creation of a diagram representing SoP expression or min-max expression since logical

conjunction, logical disjunction, min, and max are associative all operations. As we

described in section 4.1.1, to create a diagram for such an expression, we start by directly

UNIVERSITY OF ZILINA

94

creating diagrams representing products, and then we proceed to merge them using the sum

operation.

The associativity of the merging operation allows us to join diagrams in numerous

ways, using different orders of evaluations, while still achieving the same result. It is

interesting to consider two orders that we encounter in other areas such as functional

programming [88]. The first intuitive order is called left fold since it simply merges the

sequence of diagrams from left to right. In Fig. 4.2 we can see a tree illustrating the left fold

order of evaluation where the ⊕ nodes represent the merger of diagrams using associative

operation and the house-shaped nodes represent the initial sequence of diagrams.

Fig. 4.2 Left fold order of evaluation

The second order of evaluation is called tree fold and works in a slightly less intuitive yet

elegant way. Compared to the left fold, which works sequentially, the tree fold operates

hierarchically by incrementally merging pairs of neighboring diagrams until there is only

one resulting diagram left. In Fig. 4.3 we can see the tree fold order of evaluation using the

same notation as in Fig. 4.2.

DISSERTATION THESIS

95

Fig. 4.3 Tree fold order of evaluation

Notice that the number of diagram mergers (the number of ⊕ nodes) is the same for both

approaches. However, an interesting question is whether different orders of evaluation can

influence the speed of diagram creation and whether we can identify properties of the

diagrams that would allow us to pick favorable orders for a specific use case.

4.2.1.2 Fold Comparison

To investigate the influence of the order of evaluation we performed an experimental

comparison of the two folds in the creation of BDDs representing SoP expressions. We used

functions defined in PLA format [9], which is a compressed form of a truth table that can be

easily read as a SoP expression and subsequently transformed into a decision diagram.

4.2.1.2.1 Boolean Functions Representing Adders

In the first experiment, we examined functions representing output bits of bit adders [91]

measuring the time needed to create diagrams representing all outputs of the adder circuits.

In Tab. 4.1, we can see the properties of the functions examined in the experiment. The

number of terms sets the upper bound on the number of terms in the SoP that we merged to

obtain the resulting diagram (some of the terms were skipped in the creation of some

functions because the function did not depend on them). The number of functions agrees

with the number of output bits of the adder and therefore with the number of diagrams

created for the given file. Finally, in Tab. 4.2 we can see a summary of the results that we

presented in the paper [92]. The results clearly show that for each file the tree fold approach

was the more efficient in time required to create diagrams for each output function defined

in the file.

UNIVERSITY OF ZILINA

96

Tab. 4.1 Properties of the functions used in the experiment

File name Number of terms Number of variables Number of functions

10-adder_col 10,191 21 11

11-adder_col 20,427 23 12

12-adder_col 40,911 25 13

13-adder_col 81,867 27 14

14-adder_col 163,783 29 15

Tab. 4.2 Average time in milliseconds needed to create BDDs representing outputs of the adder

File name Left fold [ms] Tree fold [ms]

10-adder-col 163 71

11-adder-col 477 180

12-adder-col 1,828 448

13-adder-col 5,342 1,084

14-adder-col 16,579 2,753

The PLA files from the benchmark that we used in the experiment stored the products (rows

of the compressed truth table) in a specific configuration, which might influence the result

of the experiments since it might not represent a general case. Due to that, we repeated the

experiment but before diagram creation, we randomly shuffled the rows of the file. Tab. 4.3

presents the results of the second version of the experiment. The first observation is that the

total time needed for the diagram creation is considerably higher in both cases. Moreover,

the second and more important observation is that the tree fold approach was significantly

slower, which is the opposite of the results of the first experiment.

Tab. 4.3 Average time in milliseconds needed to create BDDs representing outputs of the adder

with randomly shuffled rows

File name Left fold [ms] Tree fold [ms]

10-adder_col 522 789

11-adder_col 2,075 2,975

12-adder_col 7,218 13,031

13-adder_col 27,512 51,063

14-adder_col 94,292 230,151

DISSERTATION THESIS

97

4.2.1.2.2 Various Boolean Functions

The results that we obtained from the first experiment are restricted to the specific type of

function representing bit adders. To obtain more general results we repeated the experiment

using a different – more representative set of 39 functions from the IWLS’93 benchmark set

[93]. Tab. 4.4 presents a summary of the results that we presented in the paper [94]. The

value of 𝛿 in the first column of the table indicates the tolerance used to determine which

version of the fold is considered faster. The fold strategy is considered faster if the ratio of

the time needed to create the diagrams using tree fold (numerator) and left fold (denominator)

is less than 1 − 𝛿. Obviously, with decreasing value of 𝛿 (with decreasing tolerance), the

number of cases when the left fold was faster and when the tree fold was faster equalizes.

The results show that in a more general set of functions, either of the two folds can be faster

depending on the specific function.

Tab. 4.4 Number of functions in the benchmark in which speed of left fold and tree fold-based

merging are different with respect to value 𝛿

𝜹
Faster

Left fold Tree fold

0.10 3 10

0.05 10 17

0.01 17 19

0.00 19 20

Both experiments showed that the choice of the folding strategy can have a significant

impact on the speed of diagram creation. Unfortunately, the results imply that neither one of

the examined folding strategies is more efficient in general, though the first experiment

implies that there exists a specific configuration that favors the tree fold approach. Therefore,

in general, it is advantageous for decision diagram libraries to implement both folding

strategies so that the user can test and choose the strategy that is more suitable for his use

case.

4.2.2 Extended Apply

The extended apply algorithm that we introduced in section 3.2.3 provides a more

convenient way of the creation of decision diagrams that represent 𝑑-ary operations. To

examine the practical performance of the algorithm, we performed an experimental

comparison [95] with the basic version of the apply algorithm.

UNIVERSITY OF ZILINA

98

In the experiment, we generated random ASTs of different sizes using an approach

similar to the one described in section 4.1.2, with a difference that the generated trees were

𝑑-way trees (each internal node has 𝑑 outgoing edges) with 𝑑 = 2,3,4,5. The size of the tree

was given by the parameter 𝑛𝑚𝑎𝑥, which set the number of leaf nodes of the AST. Then, we

transformed the AST into BDD using the extended apply algorithm as shown in Tab. 4.5.

The experiments measured the average time in milliseconds (obtained from 1,000

replications) required to transform randomly generated AST into BDD and the average

required number of steps of the algorithm. The results of the comparison are presented in

Tab. 4.6 and Tab. 4.7.

Tab. 4.5 Usage of the extended apply algorithm with different arities in the creation of BDD from

an AST (the last parameter is omitted for clarity)

𝒅 Extended apply calls

2 APPLY(APPLY(APPLY(APPLY(𝐷1, 𝐷2), 𝐷3), 𝐷4), 𝐷5)

3 APPLY(APPLY(𝐷1, 𝐷2, 𝐷3), 𝐷4, 𝐷5)

4 APPLY(APPLY(𝐷1, 𝐷2, 𝐷3, 𝐷4), 𝐷5)

5 APPLY(𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5)

Tab. 4.6 The average time in milliseconds requires to create BDD from AST

𝒏𝒎𝒂𝒙
𝒅

2 3 4 5

20,000 79 78 94 113

40,000 177 176 209 252

60,000 280 278 333 401

80,000 384 383 457 550

100,000 500 495 592 712

Tab. 4.7 The average number of steps of the extended apply algorithm

𝒏𝒎𝒂𝒙
𝒅

2 3 4 5

20,000 500,347 410,656 498,364 555,554

40,000 1,055,979 864,883 1,053,838 1,172,272

60,000 1,637,588 1,339,495 1,643,756 1,827,908

80,000 2,227,090 1,818,588 2,232,094 2,479,476

100,000 2,831,173 2,311,067 2,836,996 3,149,147

DISSERTATION THESIS

99

Overall, the results of our comparison show that the basic version of the apply algorithm

performs better compared to the extended versions – and thus we do not achieve a significant

speedup by using the extended algorithm. On the other hand, the version with arity 3 proved

to be equally fast and more efficient in terms of the number of steps of the algorithm, which

suggests that there may be use cases where the extended versions are more appropriate.

Finally, we consider one of the important benefits of extended apply to be the convenience

of using the algorithm when creating diagrams for functions that are 𝑑-ary in their nature.

4.3 Representation of Series-parallel Systems

Series-parallel systems are one of the system types that we consider complex when they

consist of a high number of components. Their nature also allows us to efficiently generate

systems with random topologies (section 4.1.2). Therefore, we chose this topology to

compare different approaches to structure function representation.

4.3.1 Comparison of Single and Series of Diagrams

In the experimental examination presented in our paper [96], we generated a random

series-parallel MSS and created a single and series of diagrams representing the structure

function of the system. We compared the number of unique nodes needed to represent the

structure function using both approaches. Tab. 4.8 presents a summary of the results, which

clearly show that the series approach is more efficient considering the number of unique

nodes. The number of nodes is one of the key properties of a decision diagram because it

defines the complexity of many algorithms that operate on the diagrams [11]. Therefore, the

possibility of representing series-parallel systems more compactly using the series of

diagrams has a positive impact on our ability to analyze complex series-parallel systems.

Tab. 4.8 Average number of nodes in a single MDD and in a series of MDDs depending on the

number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5 state MSS

𝑛
Single MDD Series of MDDs

3 4 5 3 4 5

500 1,995 5,138 10,756 1,002 1,502 2,002

1,000 4,232 11,436 24,926 2,002 3,002 4,002

1,500 6,562 18,210 40,591 3,002 4,502 6,002

2,000 8,959 25,346 57,424 4,002 6,002 8,002

2,500 11,406 32,749 75,128 5,002 7,502 10,002

UNIVERSITY OF ZILINA

100

4.3.2 Influence of the Order of Variables

One of the limitations of the presented experiment is that we only considered a single order

of variables in the diagram – the default order of variables. However, as we showed in

section 3.1.5, the order of variables can significantly influence the number of nodes. Thus,

to examine whether the series approach is more efficient even with an arbitrary order of

variables we performed a second experiment. The new experiment had a similar setup as the

previous experiment but in addition to generating a random topology of the system, we

generated and used random order of variables. Also, since some order of variables can result

in an impractical number of nodes, we significantly reduce the number of components of the

generated system. In table Tab. 4.9 we can see the results of the new experiment presented

in our paper [97]. We can see that despite a significantly lower number of components the

number of nodes in the diagrams (especially single diagrams) is considerably higher. This

suggests that the default order of variables that we used in the first experiment is a reasonable

and efficient choice for series-parallel systems. Most importantly, the data show that the

series approach is more efficient even in situations when we use a random order of variables.

Tab. 4.9 Average number of nodes in a single MDD and in a series of MDDs depending on the

number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5 state MSS

𝑛
Single MDD Series of MDDs

3 4 5 3 4 5

10 61 134 268 40 58 78

20 797 3,495 11,782 227 335 440

30 9,381 84,858 545,158 1,096 1,620 2,194

The results of the experiments offer two interesting conclusions. The first conclusion is that

the individual description of systems states of MSS is considerably more effective than the

description of the entire system. The second conclusion is that the default order of variables

is a reasonable choice for decision diagrams representing structure functions of series-

parallel systems.

4.4 System State Frequency Evaluation

The calculation of system state frequency involves multiple challenges that we need to deal

with for it to be efficient. We identified three principal approaches to the calculation, which

we discussed in detail in section 3.3.2. At the end of the section, we presented a general

DISSERTATION THESIS

101

algorithm (Alg. 3.7) for the calculation that can be used for BSS as well as MSS. However,

in the case of BSS, there exists an alternative approach that utilizes logarithms to avoid

integer overflow. We assume that our general algorithm should perform better. To confirm

the assumption, we compared the three approaches experimentally.

In the experiment, we generated 200 random BDDs using the min-max approach

(section 4.1.1) for different numbers of variables (𝑛). Subsequently, we computed the system

state frequency using all three approaches. In Tab. 4.10, we can see the average time in

microseconds required to calculate the state frequency using the three approaches. Notice

that we used the GMP multiple precision arithmetic library.

Tab. 4.10 Average time in microseconds required to calculate the state frequency using different

approaches

𝒏 Satisfy-count [μs] Satisfy-count-ln [μs] Our [μs]

10 12 14 10

30 1,387 1,823 1,337

60 59,157 69,047 57,107

80 a 471,942 191,991 161,950

90 a 788,309 329,563 287,166

100 a 1,057,991 470,303 407,762
a Using the GMP integers

The results of the experiment confirmed our assumption that our algorithm performs better

than the approach that utilizes logarithms. It also confirmed our assumption that even though

it is possible to use the basic approach based on the satisfy-count algorithm – which performs

comparably for 𝑛 < 63 – the calculations involving multiple precision integers are

considerably slower. Therefore, we conclude that it is better to use our algorithm even for

the special case of BSS.

4.5 Efficient Calculation of Logic Derivatives

4.5.1 Parametrized Procedure

Calculation of logic derivatives is an important step of the reliability analysis process. In

section 3.3.4 we described a possible approach to the calculation that utilizes general

diagram manipulation algorithms and can be used to calculate all types of derivatives.

However, one of the drawbacks of the presented approach is that it requires a separate

UNIVERSITY OF ZILINA

102

procedure for each type of derivative. As an example, we presented such procedures in

Alg. 3.9 and Alg. 3.10.

The first step in the improvement of the approach is the observation that the examples

– and procedures for the calculation of other types of derivatives as well – have almost

identical structures and, therefore, can be parameterized. Thus, the task is to identify the

parameters. Except for the IDPLD of type II, the derivatives differ only in the transformation

that they use on the cofactors. Hence, the first pair of parameters are two transformation

functions – 𝛾𝑙𝑒𝑓𝑡 and 𝛾𝑟𝑖𝑔ℎ𝑡. Type II is the only one that uses other operations than ∧ in the

final apply call. Therefore, the operation also needs to be a parameter. Finally, let us notice

that the change in the value of the variable does not require parametrization since it is the

same for all types of considered derivatives. Considering all the parameters, we present the

pseudocode of the parametrized procedure in Alg. 4.2.

procedure PARAMETRIZEDDPLD(diagram, s, r, γleft, γleft, ⊙)

 before ← COFACTOR(diagram, i, s)

 after ← COFACTOR(diagram, i, r)

 before’ ← TRANSFORM(before, γleft)

 after’ ← TRANSFORM(after, γright)

 result ← APPLY(before’, after’, ⊙)

 return result

end procedure

Alg. 4.2 Parametrized procedure for the calculation of any (I)DPLD

The algorithm presented in Alg. 4.2 can be used to calculate all types of derivatives by

providing appropriate values of the parameters. In table Tab. 4.11 we present parameters for

the calculation of all derivative types described in section 2.2.2. The notation (= 𝑗) follows

the syntax of partial function application [88] used in some programming languages. The

presented example (= 𝑗) denotes an anonymous unary function that returns true if and only

if its argument equals the value 𝑗. In the special case of IDPLD of type II we use the identity

function that returns its argument unchanged.

Tab. 4.11 Parameters of the parametrized procedure for the calculation of any (I)DPLD

Derivative
Left transform

(𝜸𝒍𝒆𝒇𝒕)

Right transform

(𝜸𝒓𝒊𝒈𝒉𝒕)
Apply operation

(⊙)

DPLD (= 𝑗) (= ℎ) (∧)

IDPLD Type I (= 𝑗), (< 𝑗) (< 𝑗), (= 𝑗) (∧)

IDPLD Type II λ𝑎. 𝑎 a λ𝑎. 𝑎 a (<), (>)

IDPLD Type III (< 𝑗), (≥ 𝑗) (≥ 𝑗), (< 𝑗) (∧)
b The identity function

DISSERTATION THESIS

103

4.5.2 Specialized (I)DPLD Calculation Algorithm

4.5.2.1 Introduction of the Algorithm

The procedure presented in Alg. 4.2 is reasonably efficient – the most expensive step is the

final apply call. Therefore, if we can represent the structure function with a diagram of

reasonable size, we can analyze it using logic derivatives. On the one hand, the advantage of

the presented procedure is that it uses a general diagram manipulation algorithm and, thus,

can be used with general diagram manipulation libraries. On the other hand, the calculation

of the derivatives has certain specifics that the general approach cannot exploit. Therefore,

we present an algorithm designed specifically for the calculation of logic derivatives.

Let us consider the transformed cofactors that enter the final apply call. The two

diagrams originate from the same diagram and, therefore, their structure is quite similar.

Moreover, we know exactly how they differ – the difference is only in the edge we used to

“skip” a node representing the variable 𝑥𝑖. This allows us to avoid “materializing” the

intermediate results (the cofactors). Instead, we can use only a view of the original diagram,

which uses a modified version of son access – the function GETSON presented in Alg. 4.3.

Consequently, we can skip the calculation of the cofactors and instead use the views (with

appropriate parameters) as the input of the apply call.

Another intermediate result that we would like to avoid is the calculation of the

transformed diagrams. Fortunately, we can use the same approach with a view of the

diagram as we did in the case of the cofactor. If we ignore type II, we notice that the role of

the transformations is to transform the cofactors into pseudo-logic functions so they can be

merged using apply with ∧ operation. Therefore, the solution is to use a custom operation

for the apply call – let us denote it using the letter Λ. The operation is a function of two

parameters of the form (3.12). The functions aim to first transform the parameters and then

return true if the values describe the desired change and false otherwise. The Λ operation

allows us to define the derivative in the following universal way:

 𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, if Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙))

0, otherwise.
 (4.2)

Furthermore, from the practical point of view, it is even better if the Λ operation encodes the

values {true, false} with integers {1,0}. This allows us to write the definition without the if

condition in the following form:

UNIVERSITY OF ZILINA

104

 𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙)). (4.3)

By combining the above-described ideas, we derived a universal algorithm for the

calculation of arbitrary (I)DPLD within a single “apply-like” algorithm (without

intermediate results). The algorithm uses an auxiliary function GETSON (Alg. 4.3) to access

the son of a node. This function performs the “cofactoring” by skipping nodes representing

the “derived by” variable.

procedure GETSON(node, k, i, value)

 son ← SON(node, k)

 if ISINTERNAL(son) ∧ INDEX(son) = i then

 return SON(son, value)

 else

 return son

 end if

end procedure

Alg. 4.3 Helper function used in the step of the universal DPLD algorithm

The entry point of the algorithm is presented in Alg. 4.4. It handles the special case when we

derive by the variable that is in the root of the diagram and, mainly, it calls the recursive step

of the algorithm. The recursive step has a structure similar to the step of the apply algorithm.

Its pseudocode is presented in Alg. A.5.

Finally, to be able to use the new algorithm, we need to define the Λ operation

corresponding to all types of considered derivatives. In Tab. 4.12, we present the definitions

for the calculation of all derivative types described in section 2.2.2 in the notation of lambda

calculus. The first part of each expression 𝜆𝑎. 𝜆𝑏. defines two parameters of the function

named 𝑎 and 𝑏. The expression following the last dot defines the value of the function for

given values of parameters.

procedure UNIVERSALDPLD(diagram, i, s, r, Λ)

 oldRoot ← ROOT(diagram)

 if ISINTERNAL(oldRoot) ∧ INDEX(oldRoot) = i then

 left ← SON(oldRoot, s)

 right ← SON(oldRoot, r)

 else

 left ← oldRoot

 right ← oldRoot

 end if

 newRoot ← UNIVERSALDPLDSTEP(i, s, r, Λ, left, right)

 return MDD(newRoot)

end procedure

Alg. 4.4 Entry point of the universal DPLD algorithm

DISSERTATION THESIS

105

procedure UNIVERSALDPLDSTEP(i, s, r, Λ, left, right)

 if CONTAINS(memo, (left, right)) then

 return LOOKUP(memo, (left, right))

 end if

 if ISTERMINAL(left) ∧ ISTERMINAL(right) then

 node ← MAKETERMINALNODE(Λ(VALUE(left), Value(right)))

 else

 ileft ← INDEX(left)

 iright ← INDEX(right)

 inew ← min(ileft, iright)

 sons ← MAKETUPLE(minew)

 for k = 0 to minew do

 if ileft = inew then

 lhs ← GETSON(left, k, i, s)

 else

 lhs ← left

 end if

 if iright = inew then

 rhs ← GETSON(left, k, i, r)

 else

 rhs ← right

 end if

 sons[k] ← UNIVERSALDPLDSTEP(i, s, r, Λ, lhs, rhs)

 end for

 node ← CREATEINTERNALNODE(inew, sons)

 end if

 PUT(memo, (left, right), node)

 return node

end procedure

Alg. 4.5 Recursive step of the universal DPLD algorithm

Notice that the variables 𝑗 and ℎ are not parameters of the Λ function – they need to be

defined outside of the function and made available during the evaluation of the expression.

Modern programming languages support this behavior in the form of lambda function

variable captures, closures, function objects with member variables, or similar constructs.

Tab. 4.12 Functions used as the Λ parameter of our universal algorithm for the calculation of

(I)DPLDs

Derivative 𝚲-operation

DPLD 𝜆𝑎. 𝜆𝑏. (𝑎 = 𝑗) ∧ (𝑏 = ℎ)

IDPLD Type I 𝜆𝑎. 𝜆𝑏. (𝑎 = 𝑗) ∧ (𝑏 < 𝑗)

IDPLD Type II 𝜆𝑎. 𝜆𝑏. (𝑎 < 𝑏)

IDPLD Type III 𝜆𝑎. 𝜆𝑏. (𝑎 ≥ 𝑗) ∧ (𝑏 < 𝑗)

UNIVERSITY OF ZILINA

106

4.5.2.2 Experimental Comparison

Our algorithm performs the entire calculation within a single “apply-like” operation in

contrast with the parametrized procedure (Alg. 4.2), which involves multiple diagrams

traversing operations. Therefore, we assume that our algorithm should perform better when

we consider the speed of the derivative calculation. The question is whether the assumption

holds and if so, how big of a speedup our algorithm offers. The answer to the question should

suggest whether it is worth implementing the new algorithm or whether using the simpler

parametrized procedure provides comparable performance.

To answer the question, we compared the parametrized procedure and our approach

presented in [98]. In the experiment, we generated random MDDs using the min-max

approach (section 4.1.1) and measured the average time required to calculate IDPLD of

type II and IDPLD of type III. We chose these two types because we assumed that the

calculation times of other types are similar to those of type III. The average times for the

different numbers of system states (𝑚), number of variables (𝑛) are presented in Tab. 4.13

and Tab. 4.14 with the relative performance (last column) of our algorithm.

Tab. 4.13 Average time in milliseconds required to compute IDPLD of type II for each variable

using the parametrized procedure and using our algorithm

𝒎 𝒏 Node count

Parametrized

procedure

[ms]

Our

algorithm

[ms]

Our /

Parametrized

2 32 129,448 2,069 1,533 0.7410

3 23 567,533 5,253 3,182 0.6058

4 20 1,641,815 16,399 9,740 0.5939

5 17 1,431,409 11,680 6,866 0.5879

Tab. 4.14 Average time in milliseconds required to compute IDPLD of type III for each variable

using the parametrized procedure and using our algorithm

𝒎 𝒏 Node count

Parametrized

procedure

[ms]

Our

algorithm

[ms]

Our /

Parametrized

2 32 128,322 3,570 1,538 0.43079

3 23 531,698 6,005 2,978 0.49597

4 20 1,591,344 18,540 9,625 0.51917

5 17 1,401,163 13,208 6,874 0.52042

DISSERTATION THESIS

107

The experimental comparison shows that our algorithm is roughly 50% faster than the

general parametrized approach. Since the calculation of logic derivatives is one of the

essential steps of reliability and importance analysis, our algorithm can provide a significant

speedup to the process of complex system analysis.

DISSERTATION THESIS

109

5 Probabilistic Evaluation of Decision Diagrams

In section 3.3.3 we introduced the calculation of node traversing probability as an essential

task of probabilistic system reliability analysis. Also, we presented practical challenges that

arise in the computation. In this section, we address the challenges, starting with the

description of algorithms for efficient NTP calculation and continuing with the description

of the impact of time-dependent component state probabilities.

5.1 Calculation of Node Traversing Probabilities

Calculation of the NTP of a terminal node following the definition (3.33) would involve

enumeration of all paths leading to a given node, which is computationally infeasible – as

we established in section 3.3.2. Just like with the computation of the state

frequency, computationally feasible algorithms use only a single traversal of the diagram.

The literature recognizes two principal approaches, which are the bottom-up approach and

the top-down approach.

5.1.1 Bottom-Up Approach

The bottom-up approach [10] is the simpler one of the two approaches. It calculates the sum

of NTPs of selected terminal nodes by calculating the probability Prob(.) for each node

using the following relation for internal node 𝐴:

Prob(𝒱, 𝐴) = ∑ Prob(𝒱, 𝐴𝑘) ∗ 𝑝𝑖𝐴,𝑘

𝑚𝑖𝐴
−1

𝑘=0

, (5.1)

and for terminal node 𝐵 as:

Prob(𝒱, 𝐵) = {

1.0, VALUE(𝐵) ∈ 𝒱
0.0, otherwise

, (5.2)

where 𝒱 is the set of values of selected terminal nodes. The sum of NTPs of all nodes

representing values in 𝒱 can be subsequently obtained using the following relation:

 ∑ NTP(𝐵)

𝐵∈𝒱

= Prob(𝒱, 𝑟𝑜𝑜𝑡). (5.3)

The recursive nature of the relation (5.1) directly translates to the recursive algorithm

presented in Alg. A.7. A crucial aspect of the algorithm is that it visits each node just once

– which is achieved using the memoization technique (section 3.2.4). Let us note that to

UNIVERSITY OF ZILINA

110

calculate the Prob(𝒱, 𝐴), we first need to calculate Prob(𝒱, 𝐴𝑘) for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1.

This approach resembles the standard post-order traversal of a tree structure. Hence, we also

refer to the algorithm as a post-order NTP calculation algorithm.

5.1.2 Top-Down Approach

The second approach is known in the literature as the top-down approach [99]. It calculates

the NTP of each node using the following relation:

 NTP(𝐴) = ∑ NTP(𝐵) ∗ 𝑝𝑖𝐵,𝑘

(𝐵,𝑘) ∈ ℰ(𝐴)

, (5.4)

where ℰ(𝐴) is a set of pairs of the form (𝑘, 𝐵), which represents the set of all edges leading

to node 𝐴 – 𝐵 being the source node and 𝑘 denoting that 𝐴 is 𝑘th son of node 𝐵. The relation

has the following special case for the root node:

 NTP(𝑟𝑜𝑜𝑡) = 1.0. (5.5)

Let us notice that the relations (5.2) and (5.4) are similar. The key difference is that in the

case of the top-down approach (5.4), we first need to fully evaluate the probability in a node

before we proceed with the evaluation of its sons – hence the name top-down approach. Also,

let us notice the difference in the notation. In the top-down approach, we use the notation

NTP(𝐴), since the probability calculated in node 𝐴 agrees with its NTP – this is one of the

possible advantages of this approach. On the other hand, in the bottom-up approach, we

denote the probability calculated in node 𝐴 using the notation Prob(. , 𝐴) since the

probability does not agree with its NTP.

In Alg. A.8 we can see the pseudocode of an algorithm implementing the top-down

approach. This algorithm differs from other diagram-evaluating algorithms – it does not

utilize recursion. The nature of the relation (5.4) requires that the diagram is processed using

the breadth-first search (BFS) traversal, which is also known as level-order traversal in the

context of tree-like structures. Hence, we also refer to the algorithm as a level-order NTP

calculation algorithm.

Implementation of the BFS traversal requires an auxiliary data structure. This

structure stores the nodes to be processed and is initialized in a way that it contains the root

of the diagram. Furthermore, the structure must ensure that we first process all nodes with

index 𝑖 before we process any node with index 𝑖 + 1, for 𝑖 = 1,2, … , 𝑛 (assuming the default

order of variables). Therefore, a suitable structure is a priority queue where the index of

a variable associated with a node serves as the priority. Any implementation of the priority

DISSERTATION THESIS

111

queue can be used; however, the increasing nature of priorities allows us to use a monotonic

priority queue [100]. Specifically, we use a straightforward implementation of the bucket

queue in the pseudocode (the stacks variable).

Furthermore, an additional constraint we need to consider is to ensure that each node

is processed just once. For this purpose, we use the memoization – just like with recursive

algorithms. Also, the resulting state of the memo table serves as the output of the algorithm.

After the algorithm finishes, it contains pairs of the form (𝐴, NTP(𝐴)).

5.1.3 Applications in Reliability Analysis

The two presented algorithms serve as an essential tool for the probabilistic evaluation

described in section 1.5.1. For example, let us consider the calculation of system

availability (1.17) of a system described by a structure function represented by diagram 𝐷

using the bottom-up approach:

 𝐴≥𝑗 = CALCULATENTPPOSTSTEP(ROOT(𝐷), {𝑎 | 𝑗 ≤ 𝑎 < 𝑚}), (5.6)

and the top-down approach.

 𝑚𝑒𝑚𝑜 = CALCULATENTPLEVEL(𝐷)

𝐴≥𝑗 = ∑ LOOKUP(𝑚𝑒𝑚𝑜, 𝑇𝑎)

𝑚−1

𝑎=𝑗

.
(5.7)

As another example, let us also consider the calculation of system state probability (1.19)

using the bottom-up approach:

 Pr{𝜙(𝒙) = 𝑗} = CALCULATENTPPOSTSTEP(ROOT(𝐷), {𝑗}), (5.8)

and the top-down approach:

 𝑚𝑒𝑚𝑜 = CALCULATENTPLEVEL(𝐷)

Pr{𝜙(𝒙) = 𝑗} = LOOKUP(𝑚𝑒𝑚𝑜, 𝑇𝑗).
(5.9)

Both approaches allow us to calculate the sum of NTPs of terminal nodes as well as

individual NTPs. The difference between the approaches is that the bottom-up approach

outputs the sum directly whilst the top-down approach outputs individual NTPs (stored in

the 𝑚𝑒𝑚𝑜) and the sum needs to be calculated additionally. This means that when we want

to know individual NTPs, we need to run the bottom-up algorithm multiple times. The

question is what the difference between the performance of the two approaches in different

use cases is.

UNIVERSITY OF ZILINA

112

5.1.4 Experimental Comparison of the Approaches

The description of the two approaches suggests that the bottom-up approach could be faster

(since it is simpler) in situations where we are interested in the sum of NTPs of terminal

nodes e.g., in the calculation of system availability whereas the top-down approach could be

faster in situations where we need to calculate NTPs of individual terminal nodes e.g., in the

calculation of system state probabilities.

To verify the assumptions, we performed an experimental comparison of the two

approaches presented in the paper [101]. In the experiment, we generated random diagrams

using approaches described in section 4.1.1 and section 4.1.2 – properties of the generated

diagrams can be found in Tab. 5.1. For each combination of the parameters, we generated

1,000 random diagrams. The subsequent comparison aimed to compare the approaches in

the following use cases:

• calculation of all system state probabilities (Tab. 5.2);

• calculation of system availability with respect to the state 𝑗 = 1 (Tab. 5.3).

In addition, we also aimed to evaluate different implementations of the priority queue used

in the top-down algorithm. Specifically, we considered the following implementations:

• heap – de facto standard implementation in standard libraries of programming

languages (top-down heap column) [102];

• bucket queue using an array list [103] of array lists to implement the buckets (top-

down array column);

• bucket queue using an array list of linked lists to implement the buckets (top-

down linked column).

The results for the calculation of system state probabilities are presented in Tab. 5.2. The

relative performance of the two algorithms differs for different values of 𝑚. For 𝑚 = 3, we

can see that the bottom-up algorithm performs better even though we needed to run it three

times – one time for each 𝑗 = 0,1,2. On the other hand, for 𝑚 = 5 we can see that the top-

down algorithm performs better. The assumption is that it would also perform better for

higher values of 𝑚 as well, since we only need to run it once regardless of the number of

system states. Another notable observation is that the bucket queue implementations

outperform general implementation (heap) and that the array list implementation of the

buckets is faster in larger diagrams.

DISSERTATION THESIS

113

In the second comparison – the calculation of 𝐴≥1 – we considered only the cases

where 𝑚 = 5 since the calculation of system availability involves only a single invocation

of the algorithm with both approaches regardless of the number of states. Hence, we expected

that the simpler bottom-up algorithm would perform better – as the results of the first

comparison suggested. Results of the comparison are presented in Tab. 5.3. They confirmed

our assumption that a single invocation of the bottom-up algorithm is notably faster than

a single invocation top-down algorithm. Finally, the results also reinforce the observation

that the implementation of the bucket queue that uses an array list for the representation of

the buckets has the best performance.

Tab. 5.1 Properties of diagrams generated for the experiment

Generating

algorithm
𝒏 𝒎

Average number

of nodes

Series-Parallel 50,000 3 280,365

Series-Parallel 10,000 5 347,204

Min-Max 40 3 13,528,106

Min-Max 20 5 2,220,734

Tab. 5.2 The average time in milliseconds required to calculate all system state probabilities

𝒏 𝒎 Bottom-up

Top-down

heap

[ms]

Top-down

array

[ms]

Top-down

linked

[ms]

50,000 3 15 22 20 18

10,000 5 58 47 30 32

40 3 1,621 3,975 1,925 2,840

20 5 573 647 330 430

Tab. 5.3 The average time in milliseconds required to calculate system availability 𝐴≥1

𝒏 𝒎 Bottom-up

Top-down

heap

[ms]

Top-down

array

[ms]

Top-down

linked

[ms]

10,000 5 13 39 26 28

20 5 167 731 383 498

UNIVERSITY OF ZILINA

114

The results showed that both algorithms find applications in probabilistic analysis. As we

assumed, the top-down algorithm is preferable in cases where we need to quantify NTPs in

individual nodes. On the other hand, the simpler bottom-up algorithm is more advantageous

in cases where we are only interested in the sum of NTPs. The results also showed that the

top-down algorithm is a suitable use case for bucket-queue, which significantly outperforms

the general implementation.

5.2 Probabilistic Calculations with Time-dependent Probabilities

Until now, in section 3.3.3 and section 5.1, we have only focused on the time-independent

branch of probabilistic analysis. However, component state probabilities usually evolve in

time and, therefore, it is necessary to consider this behavior in the probabilistic analysis to

be able to describe and analyze systems more precisely.

In this section, we describe probabilistic analysis techniques that account for the

component state probabilities no longer being constant numbers but rather expressions

depending on variable 𝑡 representing time. The expressions typically represent cumulative

distribution functions of some probability distribution – such as exponential or Weibull [1]

– that describe the probability that the component has failed (in the case of BDD) or that the

component is in a state less than 𝑗 (in the case of MSS) at time 𝑡. Consequently, the input of

the probabilistic calculation is a matrix ℙ𝑛,𝑚 of such expressions. We have identified two

principal approaches to the calculation – the basic and the symbolic approaches. In the rest

of this section, we proceed with the description and comparison of the two approaches.

5.2.1 Basic Approach

The basic approach is the simpler one of the two approaches. The first step carried out before

the evaluation of the diagram is to first evaluate each element of ℙ𝑛,𝑚 in time 𝑡 transforming

it into ℙ𝑡 – a simple matrix of floating-point numbers representing component state

probabilities at time 𝑡. Then we proceed with the probabilistic calculations using the standard

time-independent algorithms – either the bottom-up or top-down described in section 5.1.

The basic approach requires no modification of the two algorithms and therefore can be used

with existing tools. For example, the authors in [104] utilize this approach in the analysis of

distributed generation power systems. However, a possible disadvantage of this approach is

that it requires repeated evaluation of the diagram for each time point 𝑡. Alg. 5.1 illustrates

usage of the basic approach in the evaluation of system availability at multiple time points.

DISSERTATION THESIS

115

function EVALUATEBASIC(diagram, j, timePoints, ℙ)

 for ∀ t ∈ timePoints do

 ℙt ←EVALUATEDISTRIBUTIONS(ℙ, t)

 values ← {a | j ≤ a < m}

 A≥j (t) ←CALCULATENTPPOSTSTEP(diagram, values, ℙt)

 end for

end function

Alg. 5.1 Basic approach to the calculation of system availability in multiple time points

5.2.2 Symbolic Approach

5.2.2.1 Description of the Symbolic Approach

The second approach utilizes symbolic expressions – hence the name symbolic approach.

Various computer algebra systems such as Matlab, GNU Octave, or wxMaxima allow

manipulation, evaluation, and analysis of expressions represented by trees. Fig. 5.1 shows

a simple example of such a tree. Thus, the main idea of the symbolic approach is to perform

the calculation on expressions rather than probabilities evaluated in time 𝑡. Therefore, the

input matrix ℙ𝑛,𝑚 contains symbolic expressions representing component state probabilities

dependent on a single variable 𝑡 representing time.

Fig. 5.1 Expression tree representing an expression that describes the availability of a BSS

Implementation of the symbolic approach requires a suitable representation of the expression

trees. In our library, we chose GiNaC [105] – an open-source C++ library for (besides other

use cases) the creation, manipulation, and evaluation of symbolic expressions. The input of

our implementation is a matrix ℙ𝑛,𝑚 of GiNaC expressions. Since GiNaC overloads standard

arithmetic operators the manipulation of the expressions is very convenient. We can even

reuse the code for the algorithms Alg. A.7 or Alg. A.8 by using techniques of generic

programming – specifically the template mechanism of the C++ language.

UNIVERSITY OF ZILINA

116

The key difference from the basic approach is that after the last step of NTP

calculation (Alg. A.7 or Alg. A.8), the result is a function in the form of an expression

describing the probability. This expression contains a single variable – symbol 𝑡 representing

time. Now, to evaluate the probability at time 𝑡, we evaluate the expression for a given value

of 𝑡. Thus, with the basic approach we evaluate BDD using the NTP calculation algorithm

for each time point whereas with the symbolic approach, we run the NTP calculation

algorithm only once, and then we evaluate the expression for each time point. Alg. 5.2

illustrates the usage of the symbolic approach in the evaluation of system availability at

multiple time points.

function EVALUATESYMBOLIC(diagram, j, timePoints, ℙ)

 exprTree ←CREATETREE(diagram, ℙ)

 for ∀ t ∈ timePoints do

 A≥j (t) ←EVALUATETREE(exprTree, t)

 end for

end function

Alg. 5.2 Symbolic approach to the calculation of system availability in multiple time points

An interesting question is which approach is better if we need to evaluate the probability at

multiple time points. We provide an experimental comparison of the two approaches that

investigates the relative performance difference in section 5.2.3.

5.2.2.2 Symbolic Computation Example

Let us consider a simple storage system analyzed in [106]. The system consists of two units

connected in parallel. Each unit has two hard drives configured as RAID1 and RAID0

respectively. We will consider the system as a BSS for simplicity, and we will calculate its

reliability (1.27). The topology of the system can be seen in Fig. 5.2. The system has the

following structure function:

 𝜙(𝒙) = (𝑥1 ∨ 𝑥2) ∨ 𝑥3𝑥4. (5.10)

Using the structure function, component reliabilities (1.24), and the inclusion-exclusion

principle we can calculate the system reliability using the following formula:

 𝑅(𝑡) = 𝑝1(𝑡) + 𝑝2(𝑡) + 𝑝3(𝑡)𝑝4(𝑡)

− 𝑝3(𝑡)𝑝4(𝑡)(𝑝1(𝑡) + 𝑝2(𝑡) + 𝑝3(𝑡)𝑝4(𝑡)).
(5.11)

By using the bottom-up algorithm, we obtain the following formula:

 𝑅(𝑡) = 𝑞1(𝑡)(𝑝2(𝑡) + 𝑞2(𝑡)𝑝3(𝑡)𝑝4(𝑡)) + 𝑝1(𝑡), (5.12)

DISSERTATION THESIS

117

which, after substituting 1 − 𝑝𝑖(𝑡) for each 𝑞𝑖(𝑡), agrees with the formula (5.11). Let us

assume the same exponential distributions of component reliabilities as authors in [11] – we

can see the distributions in Tab. 5.4. If we substitute the distributions into expression (5.12)

we can plot the system reliability function which we can see in Fig. 5.3.

Tab. 5.4 Storage system component reliabilities

Component Component reliability 𝒑
𝒊
(𝒕)

1 𝑡 ∗ exp(25359−1)

2 𝑡 ∗ exp(6246−1)

3 𝑡 ∗ exp(4764−1)

4 𝑡 ∗ exp(44360−1)

Fig. 5.2 Reliability block diagram depicting topology of a simple storage system

Fig. 5.3 Reliability function of the storage system with the topology depicted in Fig. 5.2

Besides the difference in the approaches described in section 5.2.2.1, the symbolic approach

offers more flexibility such as that it allows for easier interaction with computer algebra

systems – we can serialize the expression and import it into some computer algebra system

for further analysis. For example, we obtained the expression (5.12) by running the bottom-

up algorithm with a matrix containing symbols 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡). Furthermore, we obtained

the chart in Fig. 5.3 by exporting the expression importing it into the R [107] system, and

using the ggplot [108] library to create the chart.

UNIVERSITY OF ZILINA

118

5.2.3 Comparison of Symbolic and Basic Approaches

We performed an experimental comparison of the basic approach and symbolic approach to

determine which approach performs better in the evaluation of time-dependent system

reliability at multiple time points. We performed three experiments using our TeDDy library

which implements both approaches.

5.2.3.1 Storage System Example

The first comparison we performed was on the storage system presented in section 5.2.3.1.

In the experiment, we evaluated system reliability using component reliabilities presented in

Tab. 5.4 at 10; 100; 1,000; and 10,000 selected time points. Tab. 5.5 shows the result of the

comparison. The durations in the table were obtained as average from 100 replications of the

computation. Column Basic computation contains the total time in nanoseconds required to

compute system reliability at the given number of time points. Column Symbolic init

contains the time needed to create the expression tree and column Symbolic computation the

total time in nanoseconds required to compute system reliability at the given number of time

points. The results clearly show that the basic approach is in the orders of magnitude faster

than the symbolic approach even when we need to evaluate a higher number of time points.

Tab. 5.5 Comparison of the basic and symbolic approach in the computation of system reliability of

a four-component storage system

Time points
Basic

computation [ns]

Symbolic

init [ns]

Symbolic

computation

10 956 9,252 267,071

100 7,258 9,454 2,607,722

1,000 69,447 9,949 25,945,398

10,000 692,683 13,456 257,718,581

5.2.3.2 Random Series-parallel Systems

The second comparison aims to compare the two approaches in the analysis of series-parallel

systems with different topologies. For this purpose, we generated random series-parallel

systems with 10, 20, 30, and 40 components using the approach described in section 4.1.2.

For each such system, we computed system reliability in 10 time points. Since the systems

are randomly generated, we assume exponential distributions of component reliabilities with

randomly generated rate parameters. Table. 3 contains the results of the comparison. The

DISSERTATION THESIS

119

durations in the table were obtained for each variable count 𝑛 as average from 10 randomly

generated system topologies and 10 replications for each topology. In addition to the

previously described columns the table also contains |BDD| and |Tree| columns which

contain the average number of nodes in BDD and the expression trees respectively.

The results confirm the results of the first experiment that the basic approach is

significantly faster. Moreover, the results also indicate that the complexity of the expression

tree increases dramatically with increasing number of variables. This suggests that the

symbolic approach is not suitable for a system with a higher number of components while

the basic approach seems to scale very well if the size of the BDD stays reasonable.

Tab. 5.6 Comparison of the basic and symbolic approach in the computation of system reliability of

randomly generated series-parallel systems

𝒏 |BDD| |Tree|
Basic computation

[ns]

Symbolic init

[ns]

Symbolic

computation [ns]

10 12 599 1,739 26,187 3,823,367

20 22 15,218 3,606 51,791 101,280,004

30 32 546,208 6,020 82,222 3,595,178,608

40 42 11,494,828 7,401 103,151 72,100,562,769

5.2.3.3 PLA Benchmark Circuits

The two experiments that we described so far used series-parallel systems. Therefore, in the

last experiment, we decided to analyze systems of different nature – PLA circuits from the

IWLS’93 benchmark [93]. Reliability analysis of logic circuits is specific since the structure

function contains variables representing inputs of the circuits as well as variables

representing unreliable logic gates [14]. The analysis aims only at the variables representing

the logic gates fixing the input variables for all possible inputs. Hence, the size of the BDD

is relatively small despite a higher number of variables. In this experiment, we also assumed

exponential distributions of component reliabilities. Just like in the first experiment, we

evaluated system reliability at 10; 100; 1,000; and 10,000 time points.

Tab. 5.7 presents the results of the experiment. Additionally the PLA file column

contain the name of the benchmark, and the 𝑛 column contains the number of variables

representing the logic gates – the number of variables in the analyzed BDD. The results show

that, again, the basic approach performed better than the symbolic approach. However, the

relative difference between the two approaches is much smaller.

UNIVERSITY OF ZILINA

120

Tab. 5.7 Comparison of the basic and symbolic approach in the computation of system reliability of

PLA circuits

PLA file 𝒏 Time points
Basic

computation [ns]

Symbolic init

[ns]

Symbolic

computation

[ns]

con1 11 10 1,905 986 36,352

con1 11 100 18,002 1,078 357,491

con1 11 1,000 178,788 1,275 3,566,846

con1 11 10,000 1,791,139 2,017 35,643,194

xor5 17 10 2,210 698 23,954

xor5 17 100 21,317 763 237,646

xor5 17 1,000 212,002 874 2,384,453

xor5 17 10,000 2,120,591 1,391 23,797,647

rd53 35 10 3,860 2,158 74,064

rd53 35 100 37,498 2,338 731,114

rd53 35 1,000 374,347 2,709 7,277,917

rd53 35 10,000 3,736,264 4,274 72,870,141

squar5 40 10 4,469 8,019 220,688

squar5 40 100 43,178 8,306 2,189,516

squar5 40 1,000 430,617 9,086 21,934,328

squar5 40 10,000 4,297,874 14,722 218,934,519

sqrt8 44 10 4,864 2,000 67,313

sqrt8 44 100 47,538 2,220 661,964

sqrt8 44 1,000 473,333 2,555 6,612,181

sqrt8 44 10,000 4,760,873 4,303 66,284,840

Each of the above-described experiments showed that the basic approach performs much

better than the symbolic approach if we consider the speed of the evaluation of NTP.

Although the results are specific to our implementation – our library TeDDy and GiNaC

library for the manipulation of expressions – the relative difference between the two

approaches is considerable and therefore is unlikely to change significantly for other

implementations. However, the symbolic approach that we presented is still a valid and

useful tool for time-dependent reliability analysis because of the mentioned possibilities to

further manipulate and analyze the expression.

DISSERTATION THESIS

121

Conclusion

This thesis dealt with the application of decision diagrams in the reliability analysis of

complex systems. It provided a comprehensive overview of the steps of the reliability

analysis process with a focus on the algorithms operating on decision diagrams representing

structure functions. Several new algorithms were introduced, and various improvements and

generalizations of existing algorithms were provided. The contributions of the thesis are the

results of solving the following research problems:

• analysis of existing approaches and algorithms utilized in the representation of

the structure function by decision diagram and their subsequent analysis:

✓ Chapter 1 introduced general approaches used in reliability analysis,

✓ Chapter 2 described discrete functions as the mathematical

foundation of the structure function (section 2.1) and means of their

analysis (section 2.2) and representation (section 2.4);

✓ finally, Chapter 3 dealt with decision diagrams and their applications

in reliability analysis (section 3.3).

• implementation of a performant and robust software library for the creation and

manipulation of decision diagrams:

✓ Chapter 3 presented essential aspects of a software library for the

creation and manipulation of decision diagrams (section 3.2);

✓ all the described algorithms and techniques are implemented in our

open-source library TeDDy [75].

• evaluation, adjustment, and improvement of existing algorithms for the creation

and manipulation of decision diagrams;

✓ Chapter 4 provided an experimental comparison of different ways of

the order of evaluation of the apply algorithm (section 4.2);

✓ Chapter 4 evaluated the per-state representation of series-parallel

systems (section 4.3);

✓ Chapter 3 introduced an algorithm for the calculation of system state

frequencies (section 3.3.2) and Chapter 4 showed that it is preferable

also in the special case of BSS (section 4.4);

• creation of new decision diagram algorithms and methods specialized for the use

case of topological and probabilistic reliability analysis:

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Záver

UNIVERSITY OF ZILINA

122

✓ Chapter 3 presented a generalized version of the apply algorithm

(section 3.2.3) for the dynamic creation of decision diagrams and

Chapter 4 showed that the algorithm is suitable for practical use cases

(section 4.2.2)

✓ Chapter 4 introduced a new universal algorithm for the efficient

calculation of arbitrary logic derivatives (section 4.5).

In conclusion, the major contribution of this thesis is the description of the optimization of

the creation and manipulation of decision diagrams for the reliability analysis of large

complex systems. The description involves existing techniques and algorithms as well as

new algorithms proposed in this thesis. Finally, a notable practical contribution is the open-

source software library specialized in reliability analysis with decision diagrams.

DISSERTATION THESIS

123

Resume

1 Predmet výskumu

Analýza spoľahlivosti je dôležitou súčasťou životného cyklu takmer všetkých systémov. Je

dôležitá už vo fáze návrhu systémov, kedy nám pomáha zostrojiť systém tak, aby dokázal

plniť požadovanú funkcionalitu dostatočne dlhý čas s požadovanou spoľahlivosťou.

Nemenej dôležitá je aj pri plánovaní údržby systémov alebo pri identifikácii komponentov

kritických pre fungovanie systému.

Prvým krokom analýzy je identifikácia počtu stavov systému. Ďalším krokom je

vytvorenie matematického popisu systému. V tejto práci sa zameriavame na popis systému

tzv. štruktúrnou funkciou [2]. Štruktúrna funkcia priradí danému stavu komponentov stav

systému – popisuje závislosť stavu systému na stave jeho komponentov. Vo všeobecnosti je

štruktúrna funkcia diskrétnou funkciou. Jej konkrétna forma závisí od počtu stavov systému

a od počtu stavov komponentov systému.

Skúmaním vlastností štruktúrnej funkcie získavame informácie o vlastnostiach

skúmaného systému. Jednou z vlastností, ktoré štruktúrna funkcia preberá je komplexnosť

systému. Tá môže byť spôsobená napríklad veľkých počtom komponentov systému, rôznou

povahou komponentov alebo komplikovanými vzťahmi medzi komponentami. Obzvlášť pri

veľkom počte komponentov je preto potrebné štruktúrnu funkciu efektívne reprezentovať.

Vhodná reprezentácia musí zvládnuť popísať aj rozsiahle systémy a musí tiež umožňovať

efektívne spracovanie v počítači.

Rozhodovací diagram [11], [12] je štruktúra, ktorá spĺňa obe uvedené vlastnosti. Ide

o acyklický graf, ktorý bol navrhnutý na efektívnu reprezentáciu diskrétnych funkcií.

Rozhodovacie diagramy sa vo všeobecnosti považujú za veľmi efektívny spôsob

reprezentácie štruktúrnej funkcie. Povaha komplexných systémov a neustály nárast zložitosti

však vytvárajú tlak na neustále zlepšovanie existujúcich techník a navrhovanie nových

prístupov. Voľne dostupné softvérové nástroje v súčasnosti poskytujú algoritmy na

všeobecnú prácu s rozhodovacími diagramami. Algoritmy na analýzu spoľahlivosti sú však

často implementované iba pre konkrétny prípad použitia alebo nie sú voľne dostupné.

 Hlavným cieľom tejto práce je preto optimalizácia aplikácie rozhodovacích

diagramov pri analýze spoľahlivosti zložitých systémov, z čoho vyplývajú nasledujúce

výskumné témy:

UNIVERSITY OF ZILINA

124

• analýza existujúcich prístupov a algoritmov využívaných pri reprezentácii

štruktúrnej funkcie pomocou rozhodovacieho diagramu a pri následnej analýze;

• implementácia výkonnej a robustnej softvérovej knižnice na tvorbu

a manipuláciu s rozhodovacími diagramami zameranej na využitie diagramov

v analýze spoľahlivosti;

• návrh, úprava a zlepšenie existujúcich algoritmov na tvorbu a manipuláciu

s rozhodovacími diagramami;

• vytvorenie nových algoritmov a metód založených na využití rozhodovacích

diagramov špecializovaných na analýzu spoľahlivosti.

2 Analýza spoľahlivosti

2.1 Počet stavov systému

Pred začiatkom analýzy systému je potrebné identifikovať počet stavov systému.

Najjednoduchší prístup je popisovať iba dva stavy systému – systém funguje a systém zlyhal

– ktoré popisujeme číslami 1 a 0 v tomto poradí. Takto popísaný systém nazývame

dvojstavový systém (BSS z angl. „Binary-State System“) [1], [2]. Pre systémy, ktoré sú zo

svojej povahy dvojstavové je takýto prístup postačujúci. Príkladom takéhoto systému je

logický obvod. Rovnako je vhodný aj pre systémy, v ktorých môže aj veľmi malé zhoršenie

stavu spôsobiť škody na technike alebo ohroziť zdravie ľudí. V takomto prípade môže ísť

napríklad o riadiaci systém elektrárne.

Mnohé systémy však dokážu plniť svoju úlohu aj po zhoršení ich stavu. Príkladom

môže byť transportná sieť, ktorá funguje s menšou prenosovou kapacitou. Takéto systémy

nazývame viacstavové (MSS z angl. „Multi-State System“) [3]. Stavy takýchto systémov

popisujeme číslami 0 pre stav, v ktorom systém nefunguje až po číslo 𝑚 − 1 pre stav,

v ktorom systém funguje bez obmedzení, kde 𝑚 je celkový počet stavov. Pri tomto type

systémov ďalej rozlišujeme homogénne systémy, v ktorých je počet stavov všetkých

komponentov a počet stavov systému rovnaký a nehomogénne systémy, v ktorých môžu

mať rôzne komponenty a celý systém rozdielny počet stavov. Táto vlastnosť je typická pre

systémy zložené z komponentov rôznej povahy – napr. z technických zariadení a ľudí.

Výhodou BSS je ich jednoduchosť a stým spojená jednoduchosť modelov, ktoré ich

popisujú – či už z pohľadu veľkosti modelov alebo z pohľadu výpočtovej zložitosti

algoritmov. Výhodou je tiež dostupnosť väčšieho množstva algoritmov a nástrojov. Na

druhej strane, ich nevýhodou môže byť až prílišné zjednodušenie v prípade popisu systémov,

DISSERTATION THESIS

125

ktoré nie sú vo svojej povahe dvojstavové. V takomto prípade je pre získanie presnejších

výsledkov potrebné popisovať takéto systémy ako viacstavové – avšak za cenu zložitejšieho

modelu a väčšej výpočtovej zložitosti.

2.2 Štruktúrna funkcia

Štruktúrna funkcia je zobrazenie, ktoré každému stavu komponentov priradí prislúchajúci

stav systému. Vo všeobecnosti ide o diskrétnu funkciu, ktorá má v prípade nehomogénneho

MSS nasledovnú podobu [5]:

𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚1 − 1} × … × {0,1, … , 𝑚𝑛 − 1}

→ {0,1, … , 𝑚 − 1},
{1}

kde 𝑛 je počet komponentov systému, 𝑥𝑖 popisuje stav 𝑖-teho komponentu pre 𝑖 = 1,2, … , 𝑛;

𝑚 je počet stavov systému, 𝑚𝑖 je počet stavov 𝑖-teho komponentu a 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) je

stavový vektor, ktorý obsahuje stav všetkých komponentov.

Definícia {1} popisuje najvšeobecnejší prípad a súhlasí s definíciou celočíselnej

funkcie [10]. V špeciálnom prípade homogénneho MSS, kedy platí 𝑚𝑖 = 𝑚𝑗 = 𝑚 pre 𝑖, 𝑗 =

1,2, … , 𝑛, má nasledovnú, jednoduchšiu, podobu [5]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚 − 1}𝑛 → {0,1, … , 𝑚 − 1}, {2}

ktorá je zhodná s definíciou viachodnotovej logickej funkcie [10]. Ak navyše platí, že 𝑚 =

2, štruktúrna funkcia popisuje BSS a má nasledovnú formu [2]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1}𝑛 → {0,1}, {3}

ktorá je zhodná s definíciou booleovskej funkcie [8].

Z definícií {1}, {2} a {3} je zrejmé, že definícia {3} predstavuje najvšeobecnejší

prípad a definície {1} a {2} predstavujú iba špeciálne prípady. V ďalšom popise budeme

preto uvažovať štruktúrnu funkciu vo forme {3}.

2.3 Logické derivácie

Skúmaním vlastností štruktúrnej funkcie získavame informácie o systéme, ktorý popisuje.

Logický diferenciálny počet [10], [109] – podobne ako klasický diferenciálny počet –

umožňuje skúmať dynamické vlastnosti diskrétnych funkcií. Dôležitým nástrojom pre

analýzu spoľahlivosti sú tzv. logické derivácie, ktoré popisujú, ako sa mení hodnota funkcie

pri konkrétnej zmene hodnoty premennej.

Základnou deriváciou je smerová logická derivácia celočíselnej funkcie 𝑓(𝒙) podľa

premennej 𝑥𝑖, ktorú definujeme nasledovným spôsobom [10]:

UNIVERSITY OF ZILINA

126

𝜕𝑓(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑗 , 𝒙) = 𝑗 a 𝑓(𝑟𝑗 , 𝒙) = ℎ

0, inak,
 {4}

kde 𝑠, 𝑟, 𝑗, ℎ ∈ {0,1, … , 𝑚 − 1}, 𝑠 ≠ 𝑟 a 𝑗 ≠ ℎ. Notácia 𝑓(𝑠𝑗 , 𝒙) predstavuje kofaktor funkcie

𝑓 podľa premennej 𝑥𝑗 s hodnotou 𝑠. Kofaktor je funkcia 𝑛 − 1 premenných, ktorú získame

zafixovaním hodnoty premennej 𝑥𝑗 na hodnotu 𝑠. Podobne je derivácia {4} funkcia 𝑛 − 1

premenných, ktorá nadobúda hodnotu 1 iba v bodoch, v ktorých zmena hodnoty premennej

𝑥𝑖 z hodnoty 𝑠 na hodnotu 𝑟 spôsobí zmenu hodnoty funkcie 𝑓 z hodnoty 𝑗 na hodnotu ℎ.

Derivácia {4} popisuje jednu špecifickú zmenu hodnoty funkcie. Pri celočíselnej

funkcii však existuje vzhľadom na prípustné hodnoty 𝑠, 𝑟, 𝑗, ℎ relatívne veľký počet

konkrétnych derivácií, ktoré je možné vyhodnotiť. Keďže jednotlivé derivácie popisujú iba

zlomok všetkých situácií, ich použitie by bolo pomerne nepraktické. Pre získanie

obsiahlejšieho pohľadu na správanie funkcie preto používame integrované smerové logické

derivácie [30]. Literatúra popisuje tri typy týchto derivácií a to:

• typ I definovaný nasledovne:

𝜕𝑓(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) = 𝑗 a 𝑓(𝑠𝑖 , 𝒙) < 𝑗
0, inak,

 {5}

• typ II definovaný nasledovne:

𝜕𝑓(↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) > 𝑓(𝑟𝑖, 𝒙)

0, inak,
 {6}

• a typ III definovaný nasledovne:

𝜕𝑓(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) ≥ 𝑗 a 𝑓(𝑟𝑖, 𝒙) < 𝑗
0, inak.

 {7}

Definície {5}, {6} a {7} sa v rámci jednotlivých typov môžu líšiť napr. smerom zmeny

hodnoty funkcie. Povaha zmeny sa však pre konkrétny typ nemení.

Zmena hodnoty premennej a následná zmena hodnoty štruktúrnej funkcie

zodpovedajú zmene stavu komponentu a následnej zmene stavu systému. Logické derivácia

preto predstavujú veľmi silný nástroj pre skúmanie vplyvu komponentov na stav systému.

V nasledujúcich sekciách preto popíšeme využitie derivácií pri výpočte rôznych

ukazovateľov spoľahlivosti.

DISSERTATION THESIS

127

2.4 Topologická analýza

Štruktúrna funkcia popisuje topológiu systému, na základe ktorej dokážeme vykonať

topologickú analýzu. Základným topologickým ukazovateľom je relatívna frekvencia stavov

systému vzhľadom na stav 𝑗 definovaná nasledovne [110]:

 𝐹𝑟≥𝑗 = TD(𝜙(𝒙) ≥ 𝑗), {8}

kde 𝜙(𝒙) je štruktúrna funkcia, 𝑗 ∈ {0,1, … , 𝑚 − 1} a notácia TD(.) označuje tzv. hustotu

pravdivosti argumentu – relatívny počet vstupných vektorov, pre ktoré argument (funkcia

s booleovským výstupom) nadobúda hodnotu 1. Frekvencia stavov systému tak popisuje

relatívny počet možných stavov komponentov, pre ktoré je systém v stave 𝑗 alebo v stave

lepšom ako 𝑗. Frekvenciu stavov systému môžeme použiť na jednoduché porovnanie dvoch

rôznych konfigurácií systému napríklad vo fáze návrhu systému.

Frekvencia stavov systému popisuje celý systém jedným číslom a nehovorí nič

o vplyve jednotlivých komponentov systému. Takúto informáciu poskytuje jeden z tzv.

ukazovateľov dôležitosti [7] zvaný štruktúrna dôležitosť. Štruktúrnu dôležitosť (SI z angl.

„Structural Importance“) je možné definovať viacerými spôsobmi. Z pohľadu

vyhodnocovania je veľmi výhodná definícia pomocou logickej derivácie [20]:

 SI𝑖 = TD (
𝜕𝑓(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
). {9}

SI𝑖 popisuje relatívny počet situácií kedy zmena stavu 𝑖-teho komponentu zo stavu 𝑠 do stavu

𝑟 spôsobí zmenu stavu systému popísanú deriváciou. V definícii {9} sme použili

integrovanú smerovú logickú deriváciu typu III {7}. Pre výpočet SI je však možné použiť aj

ostatné typy derivácií. Presný význam SI potom závisí od použitej derivácie.

2.5 Pravdepodobnostná analýza

Nevýhodou topologickej analýzy je, že predpokladá rovnakú pravdepodobnosť stavov

komponentov. Stavy komponentov sa však v praxi vyskytujú s rôznymi

pravdepodobnosťami. Pre získanie presnejších charakteristík systému je preto potrebné

vziať do úvahy aj pravdepodobnosti stavov komponentov. Ďalšou dôležitou vlastnosťou je,

že pravdepodobnosť stavov komponentov sa v čase mení. Preto rozlišuje časovo závislé

a časovo nezávislé pravdepodobnostné charakteristiky.

Časovo nezávislé pravdepodobnosti stavov komponentov označujeme nasledovne:

 𝑝𝑖,𝑘 = Pr{𝑥𝑖 = 𝑘}, {10}

UNIVERSITY OF ZILINA

128

kde 𝑖 = 1,2, … , 𝑛 a 𝑘 = 0,1, … , 𝑚𝑖 − 1. Notácia {10} označuje pravdepodobnosť, že

komponent 𝑖 je v stave 𝑘. Časovo závislé pravdepodobnosti stavov komponentov

označujeme podobne:

 𝑝𝑖,𝑠(𝑡) = Pr{𝑍𝑖(𝑡) = 𝑠}, {11}

kde 𝑠 = 0,1, … 𝑚𝑖 − 1, premenná 𝑡 reprezentuje čas a funkcia 𝑍𝑖(𝑡) popisuje stav 𝑖-teho

komponentu v čase 𝑡.

Základnou pravdepodobnostnou charakteristikou systému je dostupnosť vzhľadom

na stav systému j. Časovo nezávislú dostupnosť MSS definujeme nasledovne [3]:

 𝐴≥𝑗(𝒑) = Pr{𝜙(𝒙) ≥ 𝑗}, {12}

kde 𝑗 ∈ {1,2, … , 𝑚 − 1} a 𝒑 je matica pravdepodobností stavov komponentov.

Dostupnosť {12} zodpovedá pravdepodobnosti, že systém je v stave 𝑗 alebo v lepšom stave.

Komplementárnym ukazovateľom k dostupnosti je nedostupnosť systému vzhľadom na stav

𝑗 definovaná nasledovne [3]:

 𝑈≥𝑗(𝒑) = Pr{𝜙(𝒙) < 𝑗}, {13}

ktorá zodpovedá pravdepodobnosti, že systém je v stave horšom ako 𝑗.

Podobne ako frekvencia stavov systému {8} popisujú dostupnosť a nedostupnosť

celého systému jednou pravdepodobnosťou. Keďže však môžu byť rôzne komponenty rôzne

spoľahlivé, neponúkajú žiadnu informáciou o dôležitosti jednotlivých komponentov. Takúto

informáciou poskytujú rôzne ukazovatele dôležitosti. Jedným z bežne používaných

ukazovateľov je Birnbaumova dôležitosť (BI z angl. „Birnbaum importance“). Podobne ako

pri SI {9} je z praktického hľadiska výhodná definícia pomocou logickej derivácie [20]:

 BI𝑖,𝑠
≥ = Pr {

𝜕𝜙(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑠 − 1)
↔ 1}. {14}

BI𝑖,𝑠
≥ udáva pravdepodobnosť, že zhoršenie stavu 𝑖-teho komponentu zo stavu 𝑠 to stavu 𝑠 −

1 spôsobí zmenu stavu systému popisovanú deriváciou. Notácia . ↔ 1 zodpovedá jav kedy

ľavý argument nadobúda hodnotu 1. V definícii {14} sme použili integrovanú smerovú

logickú deriváciu typu III {7}. Pre výpočet BI je však možné použiť aj ostatné typy derivácií.

Presný význam BI potom závisí od použitej derivácie.

Definície časovo závislých verzií vyššie popísaných pravdepodobnostných

ukazovateľov sú podobné ich časovo nezávislým ekvivalentom. Zásadným rozdielom je

však argument, ktorý už nie je jednoduchá matica pravdepodobností, ale je ním vektor

stavových funkcií.

DISSERTATION THESIS

129

Časovo závislá dostupnosť systému vzhľadom na stav systému 𝑗 je definovaná

nasledovne [3]:

 𝐴≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) ≥ 𝑗}, {15}

kde 𝒁(𝑡) = (𝑍1(𝑡), 𝑍2(𝑡), … , 𝑍𝑛(𝑡)) je vektor stavových funkcií jednotlivých

komponentov.

3 Rozhodovacie diagramy

Pre zostrojenie a vyhodnotenie štruktúrnej funkcie je potrebné vybrať vhodný spôsob jej

reprezentácie. Reprezentácia musí umožniť efektívne spracovanie v počítači a zároveň

umožniť efektívne reprezentovať aj rozsiahlejšie funkcie popisujúce komplexné systémy.

Rozhodovací diagram je grafová štruktúra navrhnutá na reprezentáciu diskrétnych funkcií,

ktorá spĺňa obe uvedené vlastnosti. Binárny rozhodovací diagram [11] (BDD z angl. „Binary

Decision Diagram“) je najjednoduchší typ rozhodovacieho diagramu navrhnutý na

reprezentáciu booleovských funkcií. Jeho zovšeobecnením je viachodnotový rozhodovací

diagram [12] (MDD z angl. „Multi-valued Decision Diagram“) navrhnutý na reprezentáciu

viachodnotových logických funkcií {2} a celočíselných funkcií {1}. Vo zvyšku textu

budeme uvažovať najvšeobecnejší prípad MDD, ktorý reprezentuje celočíselnú funkciu.

3.1 Štruktúra diagramu

MDD je orientovaný acyklický graf, ktorý sa skladá z vnútorných vrcholov, ktoré

reprezentujú premenné a koncových vrcholov, ktoré reprezentujú hodnoty funkcie. Vrcholy

diagramu sú uložené na úrovniach. Jedna úroveň obsahuje vnútorné vrcholy reprezentujúce

rovnakú premennú, s výnimkou poslednej úrovne, ktorá obsahuje koncové vrcholy.

Vnútorný vrchol reprezentujúci premennú 𝑥𝑖 má 𝑚𝑖 výstupných hrán, ktoré vedú do

vrcholov na nižších úrovniach. Koncový vrchol nemá žiadne výstupné hrany a počet

koncových vrcholov je najviac 𝑚. Ukážku všetkých štruktúry rôznych typov MDD môžeme

vidieť na Obr. 1.

3.2 Tvorba diagramov

Kľúčovou vlastnosťou MDD je unikátnosť a zdieľanie vrcholov. Tieto vlastnosti sú

prakticky zabezpečené udržiavaním tzv. tabuľky unikátnych vrcholov – pred vytvorením

nového vrcholu sa najprv kontroluje, či už požadovaný vrchol neexistuje v tabuľke.

UNIVERSITY OF ZILINA

130

Základom vytvorenia MDD je tzv. priama tvorba – MDD reprezentujúci funkciu

jednej premennej alebo konštantnú funkciu môžeme vytvoriť jednoducho bez potreby

sofistikovanejšieho algoritmu. MDD reprezentujúci komplikovanejšie funkcie môžeme

následne získať spájaním priamo vytvorených diagramov pomocou binárnych operácií (∧,∨

,⊕𝑚, min, max, …). Takýto prístup nazývame dynamická tvorba MDD. Na spájanie

používame algoritmus apply [11], ktorého vstupom sú dva MDD a binárna operácia

a výstupom je nový MDD, ktorý reprezentuje novú funkciu získanú spojením vstupných

funkcií binárnou operáciou. Opakovaným použitím algoritmu apply tak môžeme vytvoriť

MDD reprezentujúci ľubovoľnú funkciu.

Pre úplnosť spomenieme ďalší možný prístup k tvorbe MDD zvaný statická tvorba,

ktorá spočíva v transformácii pravdivostnej tabuľky na MDD [80]. Tento prístup je vhodný

pre tvorbu menších MDD, ktoré môžu slúžiť ako vstup do procesu dynamickej tvorby.

Obr. 1 Vľavo: BDD reprezentujúci booleovskú funkciu, uprostred: MDD reprezentujúci

viachodnotovú logickú funkciu, vpravo: MDD reprezentujúci celočíselnú funkciu

3.3 Zefektívnenie tvorby diagramov

Vytvorenie MDD reprezentujúceho štruktúrnu funkciu je nutný krok k následnej analýze

systému. V prípade komplexných systémov môže byť štruktúrna funkcia rozsiahla

a komplikovaná, preto je potrebné vytvorenie diagramu vykonať čo najefektívnejšie. Časť

práce sa preto venuje zefektívneniu a zjednodušeniu tohto procesu.

3.3.1 Zovšeobecnenie spájania diagramov

Algoritmus apply môžeme považovať za binárnu operáciu. Mnohé funkcie/podsystémy,

ktoré chceme popisovať sú však 𝑑-árne (kde 𝑑 ∈ ℕ). Príkladom môže byť trojvstupové

logické hradlo (hradlo AND na Obr. 2) alebo paralelný (pod)systém (Obr. 2). Bežne

DISSERTATION THESIS

131

používaným riešením je viacnásobné použitie binárneho algoritmu apply. V prípade

logického obvodu na Obr. 2 by tak volanie apply mohlo vyzerať nasledovne:

APPLY(APPLY(APPLY(𝑋1, 𝑋2,∧), 𝑋3,∧), 𝑋4,∨),

kde zápis 𝑋𝑖 predstavuje MDD reprezentujúci funkciu jednej premennej 𝑥𝑖. Oveľa

prirodzenejšie by však bolo volanie apply nasledovným spôsobom:

APPLY(𝐀𝐩𝐩𝐥𝐲(𝑿𝟏, 𝑿𝟐, 𝑿𝟑,∧), 𝑋4,∨).

Vo zvýraznenej časti výrazu môžeme vidieť pomyselnú ternárnu verziu apply.

V práci sme preto navrhli zovšeobecnenú verziu algoritmu apply, ktorú sme

pomenovali extended apply. Podobne ako základná verzia algoritmu je tento postavený na

vzťahu, ktorý popisuje vnútorný vrchol diagramu pomocou Shannonovej expanzie [49].

Nami zovšeobecnený vzťah má nasledovnú podobu:

 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

, {16}

kde výraz {𝑥𝑖 ↔ 𝑘} predstavuje tzv. logický bikondicionál, ktorý nadobúda hodnotu 1 práve

vtedy a len vtedy, ak premenná 𝑥𝑖 nadobúda hodnotu 𝑘 a ⊙𝑑 je 𝑑-árna asociatívna operácia.

Členy súčtu sa dajú stotožniť s výstupnými hranami vnútorného vrcholu a celý výraz

s vnútorným vrcholom MDD.

x1

x2

x3

Obr. 2 Príklady systémov, na popis ktorých je vhodnejšie použiť ternárne funkcie; vľavo

jednoduchý logický obvod; vpravo paralelný systém s tromi komponentami

Navrhnutý algoritmus sme experimentálne porovnali so základnou verziou [95].

V experimente sme vytvárali MDD reprezentujúce náhodné 𝑑-cestné stromy pomocou

nášho algoritmu extended apply s rôznou aritou. Výsledky porovnania môžem vidieť

v Tab. 1.

Výsledky porovnania ukazujú, že základná verzia dosahuje lepšie výsledky v

porovnaní s rozšírenými verziami – a teda použitím rozšíreného algoritmu nedosahujeme

výrazné zrýchlenie. Na druhej strane, verzia s aritou 3 sa ukázala byť rovnako rýchla a

UNIVERSITY OF ZILINA

132

efektívnejšia z hľadiska počtu krokov algoritmu, čo naznačuje, že môžu existovať prípady

použitia, v ktorých je rozšírená verzia vhodnejšia.

Tab. 1 Priemerný čas v milisekundách potrebný na vytvorenie MDD z výrazového stromu

popisujúceho sériovo-paralelný systém zložený z 𝑛𝑛𝑎𝑥 komponentov

𝒏𝒎𝒂𝒙
𝒅

2 3 4 5

20 000 79 78 94 113

40 000 177 176 209 252

60 000 280 278 333 401

80 000 384 383 457 550

100 000 500 495 592 712

3.3.2 Poradie spájania diagramov

Pri tvorbe diagramov je často potrebné spojiť rádovo desiatky až stovky MDD rovnakou

operáciou ⊙. Jedno použitie algoritmu extenden apply pri takto vysokom počte MDD nie je

vhodné kvôli veľkej výpočtovej náročnosti analyzovanej v texte práce. Riešením je preto

viacnásobné použitie či už základnej alebo rozšírenej verzie apply. Kvôli asociativite

operácie ⊙ je možné toto spojenie vykonať mnohými spôsobmi. V práci sme analyzovali

prístup zvaný left-fold5, v ktorom diagramy spájame sekvenčne zľava doprava:

(((𝐷1 ⊙ 𝐷2) ⊙ 𝐷3) ⊙ 𝐷4) ⊙ 𝐷5

a prístup tree-fold, v ktorom diagramy spájame hierarchicky postupne po dvojiciach:

((𝐷1 ⊙ 𝐷2) ⊙ (𝐷3 ⊙ 𝐷4)) ⊙ 𝐷5,

kde notácia 𝐷𝑖 predstavuje počiatočný MDD.

V práci sme skúmali, či a ako poradie spájania ovplyvňuje rýchlosť vytvorenia

diagramu [111], [112]. V Tab. 2 môžeme vidieť výsledky jedného z experimentálnych

porovnaní, v ktorom sme vytvárali BDD reprezentujúce binárne sčítačky popísané PLA

súbormi [91].

Výsledky experimentu ukázali, že v konkrétnom prípade použitého benchmakru

dokáže poradie spájania výrazne ovplyvniť rýchlosť vytvorenia výsledného diagramu.

5 Názvy left-fold a tree-fold pochádzajú z programovacích jazykov, kde sa funkcie s danými menami

používajú na spracovanie údajových štruktúr [88]

DISSERTATION THESIS

133

V tomto konkrétnom prípade sa prístup tree-fold (ktorý je menej intuitívny) ukázal ako

výrazne rýchlejší. Je však dôležité spomenúť, že v ďalší experimentoch s inými dátami sa,

naopak, prístup left-fold ukázal ako rýchlejší. Z výsledkov našich experimentov preto

usudzujeme, že pre nástroje na prácu s diagramami je výhodné implementovať oba prístupy.

Tab. 2 Priemerný čas v milisekundách potrebný na vytvorenie BDD reprezentujúcich výstupy

binárnej sčítačky

Počet bitov

sčítačky

Počet spájaných

diagramov
Left fold [ms] Tree fold [ms]

10-adder-col 10 191 163 71

11-adder-col 20 427 477 180

12-adder-col 40 911 1 828 448

13-adder-col 81 867 5 342 1 084

14-adder-col 163 783 16 579 2 753

4 Aplikácia rozhodovacích diagramov v analýze spoľahlivosti

Výsledky, ktoré sme popísali v predchádzajúcej sekcii je možné aplikovať na tvorbu

diagramov vo všeobecnosti. Práca je však zameraná na špecifické využitie diagramov

v analýze spoľahlivosti. Vo zvyšku textu sa preto venujeme tejto problematike.

4.1 Reprezentácia štruktúrnej funkcie

Primárne a pre ďalšiu analýzu nevyhnutné využitie diagramov v analýze spoľahlivosti

spočíva v reprezentácii štruktúrnej funkcie. Základný a intuitívny prístup spočíva

v reprezentácii celej štruktúrnej funkcie 𝜙(𝒙) jedným MDD. V prípade MSS však existuje

aj alternatívny prístup, kedy každý stav systému popíšeme individuálne funkciami 𝜙(𝒙) ≥

1, 𝜙(𝒙) ≥ 2, … 𝜙(𝒙) ≥ 𝑚 − 1 [86]. Vizuálne porovnanie týchto dvoch prístupov môžeme

vidieť na Obr. 3. Nevýhodou tohto prístupu je potreba vytvorenia niekoľkých MDD

namiesto jedného. Na druhej strane, výhodou môže byť zjednodušenie popisu jednotlivých

stavov systému, keďže každý je popísaný samostatne.

UNIVERSITY OF ZILINA

134

Obr. 3 Štruktúrna funkcia 𝜙(𝒙) reprezentovaná jedným diagramom (vľavo) a sériou diagramov

(vpravo) pozostávajúcej z funkcií 𝜙(𝒙) ≥ 1 a 𝜙(𝒙) ≥ 2 v tomto poradí (vpravo)

Zaujímavou otázkou je tiež porovnanie veľkosti resp. celkového počtu vrcholov

MDD potrebných na reprezentáciu systému pri použití daných prístupov. Na zodpovedanie

tejto otázky sme vykonali experiment, v ktorom sme porovnávali oba prístupy pri

reprezentácii náhodne generovaných sériovo-paralelných systémov – ktoré považujeme za

komplexné pri veľkom počte komponentov, kedy je veľkosť reprezentácie obzvlášť dôležitá.

Výsledky porovnania môžeme vidieť v Tab. 3.

Tab. 3 Priemerný počet vrcholov v jednom MDD a v sérii MDD v závislosti od počtu

komponentov systému (𝑛) v prípade homogénnych sériovo-paralelných 3, 4 a 5 stavových MSS

𝑛
Jeden MDD Séria MDD

3 4 5 3 4 5

500 1 995 5 138 10 756 1 002 1 502 2 002

1 000 4 232 11 436 24 926 2 002 3 002 4 002

1 500 6 562 18 210 40 591 3 002 4 502 6 002

2 000 8 959 25 346 57 424 4 002 6 002 8 002

2 500 11 406 32 749 75 128 5 002 7 502 10 002

Výsledky experimentu jednoznačne ukázali, že v prípade sériovo-paralelných

systémov je reprezentácia pomocou série diagramov výrazne výhodnejšia ako použitie

jedného diagramu. Tento výsledok je konzistentný aj pre systémy rôznych veľkostí

s rozdielnym počtom stavov.

DISSERTATION THESIS

135

4.2 Výpočet frekvencie stavov systému

Frekvencia stavov systému {8} je jedna zo základných topologických charakteristík

systému, ktorou dokážeme jednoducho porovnať systémy s rôznymi topológiami. Jej

výpočet spočíva vo vyhodnotení jednoduchého zlomku:

 𝐹𝑟≥𝑗 =
𝛼𝜙,𝑗

𝛼𝜙
, {17}

kde 𝛼𝜙,𝑗 je počet stavových vektorov (situácií), kde je systém v stave ≥ 𝑗 a 𝛼𝜙 je celkový

počet stavových vektorov. Na vyčíslenie čitateľa môžeme využiť exitujúci algoritmus

satisfy-count [11] a menovateľ vypočítame jednoduchým súčinom ∏ 𝑚𝑖
𝑛
𝑖=1 . Praktický

problém takéhoto výpočtu je, že aj keď je výsledok z intervalu [0,1], čitateľ a menovateľ

zlomku sú často čísla, ktoré nie je možné reprezentovať 64-bitovými údajovými typmi.

V prípade BSS je možné problém s limitovaným rozsahom údajových typov vyriešiť

vypočítaním logaritmov čitateľa a menovateľa a jednoduchou úpravou vzťahu {17}, ktorý

popisujeme v práci. Tento postup sa však nedá aplikovať vo všeobecnosti na MSS. V práci

sme preto popísali špecializovanú verziu existujúceho algoritmu na výpočet

pravdepodobností, ktorá nie je limitovaná rozsahom údajových typov. Otázkou zostávalo, či

má zmysel aplikovať tento algoritmus aj na BSS alebo či je v tomto prípade postup

využívajúci logaritmy rýchlejší. Na zodpovedanie otázky sme vykonali experimentálne

porovnanie spomínaných prístupov vrátane základného na BDD reprezentujúcich náhodne

generované systémy. Výsledky porovnania môžeme vidieť v Tab. 4.

Tab. 4 Priemerný čas v mikrosekundách potrebný na výpočet frekvencie stavov systému pomocou

rôznych prístupov

𝒏 Satisfy-count [μs]
Satisfy-count-log

[μs]
Náš algoritmus [μs]

10 12 14 10

30 1 387 1 823 1 337

60 59 157 69 047 57 107

80 6 471 942 191 991 161 950

90 6 788 309 329 563 287 166

100 6 1 057 991 470 303 407 762

6 S použitím knižnice GMP [87] pre výpočty s neobmedzenou presnosťou

UNIVERSITY OF ZILINA

136

Výsledky experimentu ukázali, že náš algoritmus funguje lepšie ako prístup využívajúci

logaritmy. Potvrdil aj náš predpoklad, že hoci je možné použiť základný prístup založený na

algoritme satisfy-count – ktorý má porovnateľný výkon pre 𝑛 < 63 – výpočty zahŕňajúce

celé čísla s neobmedzenou presnosťou sú podstatne pomalšie. Preto sme dospeli k záveru,

že je lepšie použiť náš algoritmus aj pre špeciálny prípad BSS.

4.3 Efektívny výpočet logických derivácií

Logické derivácie sú veľmi užitočný nástroj pre výpočet mnohých ukazovateľov

spoľahlivosti, ako napr. rôznych ukazovateľov dôležitosti [20] alebo napríklad minimálnych

rezných vektorov [23]. Ich efektívny výpočet je preto pre proces analýzy komplexných

systémov veľmi dôležitý.

Deriváciu funkcie reprezentovanej MDD môžeme relatívne jednoducho vypočítať

nasledovaním jej definície (napr. {7}) a s použitím existujúcich algoritmov na manipuláciu

MDD konkrétne cofactor [11], transform a apply [11]. Tento prístup funguje pomerne

dobre, avšak využitie všeobecných algoritmov nemôže naplno využiť špecifiká výpočtu

derivácií. Jeho nevýhodou je tiež že, v základnej podobe nie je univerzálny – pre výpočet

rôznych derivácií musíme uvedené algoritmy kombinovať iným spôsobom s rôznymi

parametrami.

V práci sme preto navrhli špecializovaný algoritmus na výpočet ľubovoľnej

derivácie [98]. Náš algoritmus vychádza z nasledujúcej univerzálnej definície logickej

derivácie:

𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙)), {18}

kde notácia Λ predstavuje funkciu, ktorá popisuje, či zmena funkcie daná jej argumentami

predstavuje požadovanú zmenu – v tom prípade vráti hodnotu 1 – alebo nie a vráti

hodnotu 0. Funkcia Λ je parametrom nášho algoritmu, ktorý tak môžeme použiť na výpočet

ľubovoľnej logickej derivácie.

Po technickej stránke náš algoritmus kombinuje algoritmy cofactor, transform

a apply, ktoré sa v základom prístupe používajú samostatne, do jedného kroku. Na základe

tejto vlastnosti sme predpokladali, že náš algoritmus by mal byť vo výpočet derivácií

rýchlejší. Na kvantifikovanie rozdielu v rýchlosti sme preto vykonali experimentálne

porovnanie základného prístupu a nášho algoritmu pri výpočte integrovanej derivácie

DISSERTATION THESIS

137

typu III {7} z MDD reprezentujúcich náhodne generované systémy. Výsledky porovnania

môžeme vidieť v Tab. 5.

Tab. 5 Priemerný čas v milisekundách potrebný na výpočet IDPLD typu III pre každú premennú

pomocou základného postupu a pomocou nášho algoritmu

𝒎 𝒏
Počet

vrcholov

Základný

prístup

[ms]

Náš

algoritmus

[ms]

Náš

algoritmus

/ základný

prístup

2 32 128 322 3 570 1 538 0,43079

3 23 531 698 6 005 2 978 0,49597

4 20 1 591 344 18 540 9 625 0,51917

5 17 1 401 163 13 208 6 874 0,52042

Experimentálne porovnanie ukazuje, že náš algoritmus je približne o 50 % rýchlejší ako

základný prístup. Keďže výpočet logických derivácií je jedným zo základných krokov

analýzy spoľahlivosti a dôležitosti komponentov, náš algoritmus môže výrazne urýchliť

proces analýzy komplexných systémov.

4.4 Pravdepodobnostné vyhodnotenie diagramov

Pravdepodobnostná analýza poskytuje v porovnaní s jednoduchou topologickou analýzou

oveľa presnejší popis správania systému a vplyvu jednotlivých komponentov

prostredníctvom ukazovateľov akými sú napr. dostupnosť systému {12} alebo Birnbaumova

dôležitosť {14} a mnohých iných. Pri použití MDD na reprezentáciu štruktúrnej funkcie je

pri vyhodnocovaní všetkých pravdepodobnostných ukazovateľov kľúčovou úlohou výpočet

pravdepodobnosti navštívenia [48] koncového vrcholu MDD (NTP z angl. „Node

Traversing Probability“). MDD je našťastie pre výpočet pravdepodobností veľmi výhodnou

štruktúrou. Pravdepodobnosti stavov komponentov môžeme pomyselne stotožniť s hranami

MDD, ako môžeme vidieť na Obr. 4. Výpočet pravdepodobností je následne záležitosťou

vhodnej prehliadky diagramu a násobenia vhodných pravdepodobností.

V literatúre existujú dva zásadné prístupy/algoritmy k výpočtu NTP zvané bottom-

up a top-town. Tieto dva prístupy sa líšia typom prehliadky, ktorú pri výpočte používajú.

Preto ich v práci označujeme aj ako post-order a level-order algoritmy. Jedným z výsledkov

prezentovaných v práci je porovnanie týchto prístupov pri výpočte rôznych

pravdepodobnostných ukazovateľov. Výsledky nášho porovnania môžeme vidieť v Tab. 6.

UNIVERSITY OF ZILINA

138

Obr. 4 Pravdepodobnostný rozhodovací diagram s pravdepodobnosťami stavov komponentov

znázornenými na hranách diagramu

Algoritmy sme porovnávali pri výpočte pravdepodobností všetkých stavov 𝑚-stavového

systému zloženého z 𝑛-komponentov so sériovo-paralelnou topológiou (prvé dva riadky

tabuľky) a s náhodnou topológiou (posledné dva riadky tabuľky). Výsledky ukázali, že pri

vyššom počte stavov systému je výhodnejšie použiť top-down algoritmus a, naopak, pri

nižšom počte stavov systému je výhodnejší bottom-up algoritmus. Ďalším rozdielom, ktorý

v práci popisujeme, a ktorý je potrebné pri výbere algoritmu zvážiť je, že jedno vykonanie

top-down algoritmu umožňuje vypočítať individuálne pravdepodobnosti stavov systému ako

aj dostupnosť pre rôzne úrovne. Na druhej strane jednoduchší bottom-up algoritmus

umožňuje pri jednom vykonaní výpočet iba jednej charakteristiky.

Tab. 6 Priemerný čas v milisekundách potrebný na výpočet pravdepodobnosti všetkých stavov

systému

𝒏 𝒎 Bottom-up
Top-down

[ms]

50 000 3 15 20

10 000 5 58 30

40 3 1 621 1 925

20 5 573 330

4.5 Časovo závislé pravdepodobnostné výpočty

Vo vyššie popísanom porovnaní prístupov k výpočtu NTP sme pracovali s konštantnými

pravdepodobnosťami stavovo komponentov. Posledná časť práce sa venuje modifikácií

DISSERTATION THESIS

139

uvedených algoritmov, ktorá umožní pracovať aj s pravdepodobnosťami stavov

komponentov, ktoré už nie sú jednoduchými konštantami, ale sú funkciami času.

Prvým riešeným problémom je výpočet NTP (ktorá súhlasí s vybraným

pravdepodobnostným ukazovateľom) v mnohých časových. Na riešenie tohto problému sme

identifikovali dva prístupy, ktoré sme nazvali základný a symbolický. Základný prístup

využíva algoritmus bottom-up alebo top-down bez modifikácií. V rámci dodatočného kroku

však potrebuje vyhodnotiť všetky pravdepodobnosti stavov komponentov v danom čase 𝑡.

Tento prístup môžeme stručne zosumarizovať nasledovným pseudokódom, ktorý prezentuje

funkciu na výpočet dostupnosti systému vo všetkých časových okamihoch uložených

v zozname timePoints:

function EVALUATEBASIC(diagram, j, timePoints, ℙ)

 for ∀ t ∈ timePoints do

 ℙt ←EVALUATEDISTRIBUTIONS(ℙ, t)

 values ← {a | j ≤ a < m}

 A≥j (t) ←CALCULATENTPPOSTSTEP(diagram, values, ℙt)

 end for

end function.

Symbolický prístup je založený na využití symbolických výpočtov, podľa ktorých nesie svoje

pomenovanie. Podobne ako základný prístup využíva jeden z dvojice algoritmov. Tento však

musí byť upravený alebo vhodne implementovaný tak, aby dokázal sčítavať a násobiť

symbolické výrazy, ktoré môže byť reprezentované napríklad výrazovým stromom. Príklad

takéhoto stromu môžeme vidieť na Obr. 5.

Obr. 5 Výrazový strom reprezentujúci výraz, ktorý popisuje dostupnosť BSS; premenné 𝑝𝑖 a 𝑞𝑖

reprezentujú pravdepodobnosti, že 𝑖-ty komponent funguje a nefunguje v tomto poradí

Symbolický prístup tak najprv využije jeden z algoritmov na získanie výrazového stromu

reprezentujúceho vybraný pravdepodobnostný ukazovateľ (napr. dostupnosť systému).

Vstupom algoritmu je v tomto prípade matica symbolických výrazov. Následne už

UNIVERSITY OF ZILINA

140

vyhodnocuje iba získaný strom v každom časovom okamihu. Podobne ako pri základom

prístupe môžeme symbolický prístup zosumarizovať nasledovným pseudokódom:

function EVALUATESYMBOLIC(diagram, j, timePoints, ℙ)

 exprTree ←CREATETREE(diagram, ℙ)

 for ∀ t ∈ timePoints do

 A≥j (t) ←EVALUATETREE(exprTree, t)

 end for

end function.

V našej knižnici TeDDy [75] sme symbolický prístup implementovali pomocou knižnice

GiNaC [105], ktorá podporuje prácu so symbolickými výrazmi v jazyku C++.

Zaujímavou otázkou je ako sa dva uvedené prístupy líšia z pohľadu časovej

náročnosti na výpočet pravdepodobnostného ukazovateľa v mnohých časových okamihoch.

Za účelom preskúmania tohto rozdielu sme vykonali experimentálne porovnanie týchto

prístupov pri výpočte dostupnosti náhodne generovaných sériovo-paralelných BSS.

Výsledky tohto porovnania môžeme vidieť v Tab. 7. Stĺpce |BDD| a |Strom| obsahujú

veľkosť danej štruktúry. Zvyšné stĺpce obsahujú celkový priemerný čas v nanosekundách

potrebný na vyhodnotenie dostupnosti systému v 10 časových okamihoch.

Tab. 7 Porovnanie základného a symbolického prístupu pri výpočte dostupnosti náhodne

generovaných sériovo-paralelných systémov

𝒏 |BDD| |Strom|
Základný

prístup [ns]

Vytvorenie

stromu [ns]

Symbolické

výpočty [ns]

10 12 599 1 739 26 187 3 823 367

20 22 15 218 3 606 51 791 101 280 004

30 32 546 208 6 020 82 222 3 595 178 608

40 42 11 494 828 7 401 103 151 72 100 562 769

Výsledky experiment ukázali, že základný prístup funguje oveľa lepšie ako symbolický

prístup, ak berieme do úvahy rýchlosť vyhodnotenia NTP. Podobné výsledky sme získali aj

z iných experimentov, ktoré vyhodnocovali tisícky rôznych časových okamihov. Hoci

výsledky sú špecifické pre našu implementáciu – knižnicu TeDDy a knižnicu GiNaC na

manipuláciu s výrazmi –relatívny rozdiel medzi oboma prístupmi je značný. Preto je

nepravdepodobné, že by sa pri iných implementáciách výrazne zmenil.

Symbolický prístup dosahuje v porovnaní so základným pomerne zlé výsledky. Na

druhej strane nám však poskytuje možnosti, ktoré nemôžeme základným prístupom

dosiahnuť. Jednou z nich je napríklad možnosť získať výraz popisujúci pravdepodobnostný

DISSERTATION THESIS

141

ukazovateľ. Výraz môžeme analyzovať napríklad použitím knižnice GiNaC alebo ho

môžeme exportovať do systému ako napr. Matlab alebo wxMaxima.

5 Záver

Práca sa zaoberala aplikáciou rozhodovacích diagramov pri analýze spoľahlivosti

komplexných systémov. Poskytla obsiahly prehľad krokov procesu analýzy spoľahlivosti so

zameraním na algoritmy založené na využití rozhodovacích diagramov reprezentujúcich

štruktúrnu funkciu. Ďalej predstavila niekoľko nových algoritmov a poskytla rôzne

vylepšenia a zovšeobecnenia existujúcich algoritmov. Prínosom práce sú výsledky riešenia

nasledujúcich výskumných problémov:

• Analýza existujúcich prístupov a algoritmov používaných pri reprezentácii

štruktúrnej funkcie pomocou rozhodovacích diagramov a ich následná analýza:

✓ v úvodnej časti práca predstavila všeobecné prístupy používané pri

analýze spoľahlivosti;

✓ ďalej opísala diskrétne funkcie ako matematický základ štruktúrnej

funkcie a spôsoby ich analýzy a reprezentácie;

✓ nakoniec úvodnej časti sa zaoberala rozhodovacími diagramami a ich

aplikáciami v analýze spoľahlivosti.

• Implementácia výkonnej a robustnej softvérovej knižnice na tvorbu

a manipuláciu s rozhodovacími diagramami:

✓ prvá časť jadra práce predstavila základné aspekty softvérovej

knižnice na tvorbu a manipuláciu s rozhodovacími diagramami;

✓ všetky algoritmy a techniky opísané v práci boli implementované

v open-source knižnici TeDDy.

• Vyhodnocovanie, úprava a zlepšovanie existujúcich algoritmov na tvorbu

a manipuláciu s rozhodovacími diagramami;

✓ praktická časť práce poskytla experimentálne porovnanie rôznych

spôsobov poradia vyhodnocovania algoritmu aplikácie;

✓ ďalej vyhodnotila rôzne prístupy k reprezentácii štruktúrnej funkcie

sériovo-paralelných systémov;

✓ práca tiež predstavila univerzálny algoritmus na výpočet stavových

frekvencie stavov systému.

UNIVERSITY OF ZILINA

142

• Vytvorenie nových algoritmov a metód rozhodovacích diagramov

špecializovaných na prípad použitia topologickej a pravdepodobnostnej analýzy

spoľahlivosti:

✓ práca predstavila zovšeobecnenú verziu algoritmu na dynamickú

tvorbu rozhodovacích diagramov;

✓ nakoniec predstavila nový univerzálny algoritmus na efektívny

výpočet ľubovoľných logických derivácií.

Záverom možno konštatovať, že hlavným prínosom tejto práce je opis optimalizácie tvorby

a manipulácie s rozhodovacími diagramami pre analýzu spoľahlivosti rozsiahlych

komplexných systémov. Opis zahŕňa existujúce techniky a algoritmy, ako aj nové algoritmy

navrhnuté v tejto práci. Napokon, významným praktickým prínosom je softvérová knižnica

s otvoreným zdrojovým kódom špecializovaná na analýzu spoľahlivosti pomocou

rozhodovacích diagramov.

DISSERTATION THESIS

143

Bibliography

[1] M. Rausand and A. Høyland, System Reliability Theory, 2nd ed. Hoboken, NJ: John

Wiley & Sons, Inc., 2004.

[2] E. Zio, An Introduction to the Basics of Reliability and Risk Analysis. World Scientific

Publishing Company, 2007. doi: 10.1142/6442.

[3] B. Natvig, Multistate Systems Reliability Theory with Applications. Chichester, UK:

John Wiley & Sons, Inc., 2011. doi: 10.1002/9780470977088.

[4] I. Frenkel, A. Lisnianski, and Y. Ding, Multi-state System Analysis and Optimization

for Engineers and Industrial Managers. 2010. doi: 10.1007/978-1-84996-320-6.

[5] A. Lisnianski and G. Levitin, Multi-State System Reliability: Assessment,

Optimization and Application. Singapore, SG: World Scientific Publishing Company,

2003. doi: 10.1142/5221.

[6] M. Kvassay and E. Zaitseva, Topological analysis of multi-state systems based on

direct partial logic derivatives, vol. 0, no. 9783319634. 2018. doi: 10.1007/978-3-

319-63423-4_14.

[7] W. Kuo and X. Zhu, “Importance Measures in Reliability, Risk, and Optimization:

Principles and Applications,” Importance Measures in Reliability, Risk, and

Optimization: Principles and Applications, Apr. 2012, doi: 10.1002/9781118314593.

[8] Y. Crama and P. Hammer, Boolean Functions: Theory, Algorithms, and Applications.

2011. doi: 10.1017/CBO9780511852008.

[9] R. Stanković, J. Astola, and C. Moraga, Representation of Multiple-Valued Logic

Functions. Morgan & Claypool, 2012. doi:

10.2200/S00420ED1V01Y201205DCS037.

[10] S. Yanushkevich, D. Miller, V. Shmerko, and R. Stankovic, Decision Diagram

Techniques for Micro- and Nanoelectronic Design Handbook. Boca Raton, FL: CRC

Press, 2006. doi: 10.1201/9781420037586.

[11] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE

Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986, doi:

10.1109/TC.1986.1676819.

[12] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton, “Algorithms for discrete function

manipulation,” in 1990 IEEE International Conference on Computer-Aided Design.

Digest of Technical Papers, 1990, pp. 92–95. doi: 10.1109/ICCAD.1990.129849.

[13] M. R. Choudhury and K. Mohanram, “Reliability Analysis of Logic Circuits,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,

no. 3, pp. 392–405, 2009, doi: 10.1109/TCAD.2009.2012530.

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Zoznam_použitej_literatúry

UNIVERSITY OF ZILINA

144

[14] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Reliability Analysis of

Multiple-Outputs Logic Circuits Based on Structure Function Approach,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,

no. 3, pp. 398–411, 2017, doi: 10.1109/TCAD.2016.2586444.

[15] Y. Watanabe, T. Oikawa, and K. Muramatsu, “Development of the DQFM method to

consider the effect of correlation of component failures in seismic PSA of nuclear

power plant,” Reliab Eng Syst Saf, vol. 79, no. 3, pp. 265–279, 2003, doi:

https://doi.org/10.1016/S0951-8320(02)00053-4.

[16] B. Nystrom, L. Austrin, N. Ankarback, and E. Nilsson, “Fault Tree Analysis of an

Aircraft Electric Power Supply System to Electrical Actuators,” in 2006 International

Conference on Probabilistic Methods Applied to Power Systems, 2006, pp. 1–7. doi:

10.1109/PMAPS.2006.360325.

[17] P. Praks, V. Kopustinskas, and M. Masera, “Probabilistic modelling of security of

supply in gas networks and evaluation of new infrastructure,” Reliab Eng Syst Saf,

vol. 144, pp. 254–264, 2015, doi: https://doi.org/10.1016/j.ress.2015.08.005.

[18] E. Zaitseva, V. Levashenko, M. Kvassay, and P. Barach, “Healthcare system

reliability analysis addressing uncertain and ambiguous data,” in 2017 International

Conference on Information and Digital Technologies (IDT), 2017, pp. 442–451. doi:

10.1109/DT.2017.8024334.

[19] E. Zaitseva, V. Levashenko, and M. Rusin, “Reliability analysis of healthcare

system,” in 2011 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2011, pp. 169–175.

[20] E. Zaitseva and L. Vitaly, “Importance analysis by logical differential calculus,”

Automation and Remote Control, vol. 74, 2013, doi: 10.1134/S000511791302001X.

[21] W. Kuo and X. Zhu, “Some recent advances on importance measures in reliability,”

IEEE Trans Reliab, vol. 61, no. 2, pp. 344–360, 2012, doi:

10.1109/TR.2012.2194196.

[22] M. Kvassay, V. Levashenko, and E. Zaitseva, “Analysis of minimal cut and path sets

based on direct partial Boolean derivatives,” Proc Inst Mech Eng O J Risk Reliab,

vol. 230, no. 2, pp. 147–161, Apr. 2016, doi: 10.1177/1748006X15598722.

[23] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Minimal cut vectors and

logical differential calculus,” Proceedings of The International Symposium on

Multiple-Valued Logic, pp. 167–172, 2014, doi: 10.1109/ISMVL.2014.37.

[24] K. Kołowrocki, Reliability of Large and Complex Systems. 2014.

[25] J. E. Byun, H. M. Noh, and J. Song, “Reliability growth analysis of k-out-of-N

systems using matrix-based system reliability method,” Reliab Eng Syst Saf, vol. 165,

pp. 410–421, Sep. 2017, doi: 10.1016/J.RESS.2017.05.001.

DISSERTATION THESIS

145

[26] N. Mannai and S. Gasmi, “Optimal design of k-out-of-n system under first and last

replacement in reliability theory,” Operational Research, vol. 20, no. 3, pp. 1353–

1368, Sep. 2020, doi: 10.1007/S12351-018-0375-4/FIGURES/3.

[27] D. A. Marx and A. D. Slonim, “Assessing patient safety risk before the injury occurs:

an introduction to sociotechnical probabilistic risk modelling in health care,” Qual

Saf Health Care, vol. 12 Suppl 2, no. Suppl 2, Dec. 2003, doi:

10.1136/QHC.12.SUPPL_2.II33.

[28] W. S. Griffith, “Multistate reliability models,” J Appl Probab, vol. 17, no. 3, pp. 735–

744, Sep. 1980, doi: 10.2307/3212967.

[29] G. Levitin, L. Podofillini, and E. Zio, “Generalised importance measures for multi-

state elements based on performance level restrictions,” Reliab Eng Syst Saf, vol. 82,

no. 3, pp. 287–298, Dec. 2003, doi: 10.1016/S0951-8320(03)00171-6.

[30] M. Kvassay, E. Zaitseva, and V. Levashenko, “Importance analysis of multi-state

systems based on tools of logical differential calculus,” Reliab Eng Syst Saf, vol. 165,

pp. 302–316, 2017, doi: https://doi.org/10.1016/j.ress.2017.03.021.

[31] T. Nakagawa, “Stochastic Processes,” 2011, doi: 10.1007/978-0-85729-274-2.

[32] D. Butler, “A complete importance ranking for components of binary coherent

systems, with extensions to multi-state systems,” Naval Research Logistics Quarterly,

vol. 26, no. 4, pp. 565–578, Dec. 1979, doi: 10.1002/NAV.3800260402.

[33] Z. W. Birnbaum, On the Importance of Different Components in a Multicomponent

System. in Technical report (University of Washington. Laboratory of Statistical

Research). Laboratory of Statistical Research, Department of Mathematics,

University of Washington, 1968. [Online]. Available:

https://books.google.sk/books?id=LRzcMgEACAAJ

[34] J. Barabady and U. Kumar, “Availability allocation through importance measures,”

undefined, vol. 24, no. 6, pp. 643–657, 2007, doi: 10.1108/02656710710757826.

[35] J. D. Andrews and S. Beeson, “Birnbaum’s measure of component importance for

noncoherent systems,” IEEE Trans Reliab, vol. 52, no. 2, pp. 213–219, Jun. 2003,

doi: 10.1109/TR.2003.809656.

[36] F. C. Meng, “Comparing the importance of system components by some structural

characteristics,” IEEE Trans Reliab, vol. 45, no. 1, pp. 59–65, 1996, doi:

10.1109/24.488917.

[37] E. Zio and L. Podofillini, “Monte Carlo simulation analysis of the effects of different

system performance levels on the importance of multi-state components,” Reliab Eng

Syst Saf, vol. 82, no. 1, pp. 63–73, Oct. 2003, doi: 10.1016/S0951-8320(03)00124-8.

[38] G. Levitin, L. Podofillini, and E. Zio, “Generalised importance measures for multi-

state elements based on performance level restrictions,” Reliab Eng Syst Saf, vol. 82,

no. 3, pp. 287–298, Dec. 2003, doi: 10.1016/S0951-8320(03)00171-6.

UNIVERSITY OF ZILINA

146

[39] J. E. Ramirez-Marquez and D. W. Coit, “Composite importance measures for multi-

state systems with multi-state components,” IEEE Trans Reliab, vol. 54, no. 3, pp.

517–529, Sep. 2005, doi: 10.1109/TR.2005.853444.

[40] B. Steinbach and C. Posthoff, “Boolean Differential Calculus,” Synthesis Lectures on

Digital Circuits and Systems, vol. 12, pp. 1–215, Aug. 2017, doi:

10.2200/S00766ED1V01Y201704DCS052.

[41] M. Kvassay, P. Rusnak, and P. Sedlacek, “Computation of Birnbaum’s Importance

Using Logic Differential Calculus,” in 2019 42nd International Conference on

Telecommunications and Signal Processing (TSP), 2019, pp. 613–616. doi:

10.1109/TSP.2019.8768854.

[42] M. Kvassay, E. N. Zaitseva, and V. G. Levashenko, “Minimal Cut and Minimal Path

Vectors in Reliability Analysis of Binary- and Multi-State Systems,” in ICTERI,

2017.

[43] M. Kvassay, P. Rusnak, R. S. Stankovic, and A. Forgac, “Use of Binary Decision

Diagrams in Importance Analysis Based on Minimal Cut Vectors,” 2019 14th

International Conference on Advanced Technologies, Systems and Services in

Telecommunications, TELSIKS 2019 - Proceedings, pp. 78–81, Oct. 2019, doi:

10.1109/TELSIKS46999.2019.9002349.

[44] M. Kvassay, P. Rusnak, E. Zaitseva, and R. S. Stanković, “Multi-Valued Decision

Diagrams in Importance Analysis Based on Minimal Cut Vectors,” in 2020 IEEE 50th

International Symposium on Multiple-Valued Logic (ISMVL), 2020, pp. 265–270. doi:

10.1109/ISMVL49045.2020.00011.

[45] R. J. Wilson, Introduction to Graph Theory. USA: John Wiley & Sons, Inc.,

1986.

[46] C. Y. Lee, “Representation of switching circuits by binary-decision programs,” The

Bell System Technical Journal, vol. 38, no. 4, pp. 985–999, 1959, doi: 10.1002/j.1538-

7305.1959.tb01585.x.

[47] Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol. C–27,

no. 6, pp. 509–516, 1978, doi: 10.1109/TC.1978.1675141.

[48] S. Nagayama, A. Mishchenko, T. Sasao, and J. Butler, “Exact and heuristic

minimization of the average path length in decision diagrams,” Journal of Multiple-

Valued Logic and Soft Computing, vol. 11, Aug. 2005.

[49] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions

of the American Institute of Electrical Engineers, vol. 57, no. 12, pp. 713–723, 1938,

doi: 10.1109/T-AIEE.1938.5057767.

[50] V. Dvorák, “Bounds on Size of Decision Diagrams.,” J. UCS, vol. 3, pp. 2–22, Apr.

1997.

DISSERTATION THESIS

147

[51] J. E. Newton and D. E. Verna, “A Theoretical and Numerical Analysis of the Worst-

Case Size of Reduced Ordered Binary Decision Diagrams,” ACM Transactions on

Computational Logic, 2018, [Online]. Available: https://hal.archives-ouvertes.fr/hal-

01880774

[52] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-

complete,” IEEE Transactions on Computers, vol. 45, no. 9, pp. 993–1002, 1996, doi:

10.1109/12.537122.

[53] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Faster SAT and Smaller BDDs via

Common Function Structure,” in University of Michigan, 2001, pp. 443–448.

[54] F. Aloul, I. Markov, and K. Sakallah, “FORCE: A Fast and Easy-to-Implement

Variable-Ordering Heuristic,” IEEE Great Lakes Symposium on VLSI, Aug. 2003,

doi: 10.1145/764808.764839.

[55] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” in

Proceedings of 1993 International Conference on Computer Aided Design (ICCAD),

1993, pp. 42–47. doi: 10.1109/ICCAD.1993.580029.

[56] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of binary decision

diagrams for the application of multi-level logic synthesis,” in Proceedings of the

European Conference on Design Automation., 1991, pp. 50–54. doi:

10.1109/EDAC.1991.206358.

[57] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision diagrams

based on exchanges of variables,” in 1991 IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, 1991, pp. 472–475. doi:

10.1109/ICCAD.1991.185307.

[58] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD optimization for

RRAM based circuit design,” Formal Proceedings of the 2016 IEEE 19th

International Symposium on Design and Diagnostics of Electronic Circuits and

Systems, DDECS 2016, May 2016, doi: 10.1109/DDECS.2016.7482461.

[59] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Logic

verification using binary decision diagrams in a logic synthesis environment,” pp. 6–

9, 1988, doi: 10.1109/ICCAD.1988.122451.

[60] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD

package,” in 27th ACM/IEEE Design Automation Conference, 1990, pp. 40–45. doi:

10.1109/DAC.1990.114826.

[61] K. Karplus, “REPRESENTING BOOLEAN FUNCTIONS WITH IF-THEN-ELSE

DAGs,” University of California at Santa Cruz, Santa Cruz, 1988.

[62] A. Mishchenko, “Introduction to zero-suppressed decision diagrams,” Synthesis

Lectures on Digital Circuits and Systems, vol. 45, Aug. 2001.

UNIVERSITY OF ZILINA

148

[63] R. I. Bahar et al., “Algebraic decision diagrams and their applications,” in

Proceedings of 1993 International Conference on Computer Aided Design (ICCAD),

1993, pp. 188–191. doi: 10.1109/ICCAD.1993.580054.

[64] Y.-T. Lai and S. Sastry, “Edge-valued binary decision for multi-level hierarchical

verification,” [1992] Proceedings 29th ACM/IEEE Design Automation Conference,

pp. 608–613, 1992, doi: 10.1109/DAC.1992.227813.

[65] A. Shrestha and L. Xing, “A logarithmic binary decision diagram-based method for

multistate system analysis,” IEEE Trans Reliab, vol. 57, no. 4, pp. 595–606, 2008,

doi: 10.1109/TR.2008.2006038.

[66] X. Zang, D. Wang, H. Sun, and K. S. Trivedi, “A BDD-Based Algorithm for Analysis

of Multistate Systems with Multistate Components,” IEEE Transactions on

Computers, vol. 52, no. 12, pp. 1608–1618, Dec. 2003, doi:

10.1109/TC.2003.1252856.

[67] D. Bugaychenko, “On application of multi-rooted binary decision diagrams to

probabilistic model checking,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 7148 LNCS, pp. 104–118, 2012, doi: 10.1007/978-3-642-

27940-9_8.

[68] J. Lind-Nielsen, “BuDDy – A Binary Decision Diagram Package.” Accessed: Apr.

26, 2024. [Online]. Available: https://github.com/jgcoded/BuDDy

[69] F. Somenzi, “CUDD: CU Decision Diagram Package.” Accessed: Apr. 26, 2024.

[Online]. Available: https://github.com/vscosta/cudd

[70] T. van Dijk, Sylvan: multi-core decision diagrams, no. 16–398. University of Twente,

2016. doi: 10.3990/1.9789036541602.

[71] A. Walker, “cudd: Bindings to the CUDD binary decision diagrams library.”

Accessed: Apr. 27, 2024. [Online]. Available:

https://hackage.haskell.org/package/cudd

[72] I. Filippidis, “dd: Library of decision diagrams and algorithms on them, in pure

Python, as well as Cython bindings to CUDD, Sylvan, and BuDDy.” Accessed: Apr.

27, 2024. [Online]. Available: https://pypi.org/project/dd/0.4.2/

[73] A. Vahidi, “JDD: a pure Java BDD and Z-BDD library.” Accessed: Apr. 27, 2024.

[Online]. Available: https://bitbucket.org/vahidi/jdd

[74] M. Research, “DecisionDiagrams.” Accessed: Apr. 27, 2024. [Online]. Available:

https://github.com/microsoft/DecisionDiagrams

[75] M. Mrena, M. Kvassay, and E. Zaitseva, “TeDDy: Templated Decision Diagram

Library,” SoftwareX, p. to appear, 2024.

[76] M. Mrena, “TeDDy: Templated Decision Diagram library.” 2024.

DISSERTATION THESIS

149

[77] S. Minato, N. Ishiura, and S. Yajima, “Shared Binary Decision Diagram with

Attributed Edges for Efficient Boolean function Manipulation.,” in 27th ACM/IEEE

Design Automation Conference. Proceedings 1990, Jul. 1990, pp. 52–57. doi:

10.1109/DAC.1990.114828.

[78] D. M. Miller and R. Drechsler, “Implementing a multiple-valued decision diagram

package,” in Proceedings. 1998 28th IEEE International Symposium on Multiple-

Valued Logic (Cat. No.98CB36138), 1998, pp. 52–57. doi:

10.1109/ISMVL.1998.679287.

[79] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software. USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[80] T. Krkoška, “Softvérová knižnica pre manipuláciu s binárnymi rozhodovacími

diagramami,” University of Žilina, 2019.

[81] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Binary Decision

Diagrams in reliability analysis of standard system structures,” in 2016 International

Conference on Information and Digital Technologies (IDT), 2016, pp. 164–172. doi:

10.1109/DT.2016.7557168.

[82] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Multi-valued Decision

Diagrams for k-Out-of-n Three-State Systems,” in 2017 IEEE 47th International

Symposium on Multiple-Valued Logic (ISMVL), 2017, pp. 260–265. doi:

10.1109/ISMVL.2017.38.

[83] M. Kvassay, E. Zaitseva, P. Sedlacek, and P. Rusnak, “Multi-valued Decision

Diagrams in Reliability Analysis of Consecutive k-out-of-(2k-1) Systems,” in 2021

IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL), 2021, pp.

81–86. doi: 10.1109/ISMVL51352.2021.00023.

[84] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision

Diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318, Sep. 1992, doi:

10.1145/136035.136043.

[85] D. M. Miller and R. Drechsler, “On the construction of multiple-valued decision

diagrams,” Proceedings 32nd IEEE International Symposium on Multiple- Valued

Logic, pp. 245–253, 2002, doi: 10.1109/ISMVL.2002.1011095.

[86] L. Xing and Y. S. Dai, “A new decision-diagram-based method for efficient analysis

on multistate systems,” IEEE Trans Dependable Secure Comput, vol. 6, no. 3, pp.

161–174, 2009, doi: 10.1109/TDSC.2007.70244.

[87] “The GNU Multiple Precision Arithmetic Library.”

[88] G. Hutton, Programming in Haskell, 2nd ed. USA: Cambridge University Press,

2016.

UNIVERSITY OF ZILINA

150

[89] M. Kvassay, P. Rusnak, E. Zaitseva, and J. Kostolny, “Application of logic

differential calculus and binary decision diagrams in detection of minimal cut

vectors,” Proceedings of the 29th European Safety and Reliability Conference,

ESREL 2019, pp. 802–809, 2020, doi: 10.3850/978-981-11-2724-3_0447-CD.

[90] A. Shrestha, L. Xing, and Y. Dai, “Decision Diagram Based Methods and Complexity

Analysis for Multi-State Systems,” IEEE Trans Reliab, vol. 59, no. 1, pp. 145–161,

2010, doi: 10.1109/TR.2009.2034946.

[91] P. Fišer, “Collection of Digital Design Benchmarks.” 1991. [Online]. Available:

https://ddd.fit.cvut.cz/www/prj/Benchmarks/

[92] M. Mrena and M. Kvassay, “Comparison of Left Fold and Tree Fold Strategies in

Creation of Binary Decision Diagrams,” in 2021 International Conference on

Information and Digital Technologies (IDT), 2021, pp. 341–352. doi:

10.1109/IDT52577.2021.9497593.

[93] K. McElvain, “IWLS’93 Benchmark Set : Version 4.0,” Distributed as a part of

IWLS’93 benchmark set, 1993.

[94] M. Mrena, P. Sedlacek, and M. Kvassay, “Linear Fold and Tree Fold in Creation of

Binary Decision Diagrams of Standard Benchmarks,” in 2021 11th IEEE

International Conference on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications (IDAACS), 2021, pp. 1120–1125. doi:

10.1109/IDAACS53288.2021.9660940.

[95] M. Mrena, M. Kvassay, and S. Stankevich, “Dynamic Binary Decision Diagram

Creation Using an Extended Apply Algorithm,” in 2023 IEEE 12th International

Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), 2023, pp. 513–518. doi:

10.1109/IDAACS58523.2023.10348726.

[96] M. Mrena, M. Kvassay, and S. Czapp, “Single and Series of Multi-valued Decision

Diagrams in Representation of Structure Function,” in Lecture Notes in Networks and

Systems, 2022, pp. 176–185. doi: 10.1007/978-3-031-06746-4_17.

[97] M. Mrena and M. Kvassay, “Experimental Analysis of Decision Diagrams Used to

Represent Structure Functions of Series-Parallel Multi-State Systems,” in ESREL

2022: Proceedings of the 32nd European Safety and Reliability Conference,

Singapore: RESEARCH PUBLISHING, 2022, pp. 1707–1714. doi: 10.3850/978-

981-18-5183-4_R29-09-653-cd.

[98] M. Mrena and M. Kvassay, “Efficient Computation of Logic Derivatives Using Multi-

valued Decision Diagrams,” in ISMVL 2024 IEEE International Symposium on

Multiple-Valued Logic, 2024, p. to appear.

DISSERTATION THESIS

151

[99] M. A. Thornton and V. S. S. Nair, “Efficient calculation of spectral coefficients and

their applications,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 14, no. 11, pp. 1328–1341, 1995, doi: 10.1109/43.469660.

[100] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer Publishing Company,

Incorporated, 2008.

[101] M. Mrena and M. Kvassay, “Experimental Survey of Algorithms for the Calculation

of Node Traversal Probabilities in Multi-valued Decision Diagrams,” in Reliability

Engineering and Computational Intelligence for Complex Systems: Design, Analysis

and Evaluation , C. van Gulijk, E. Zaitseva, and M. Kvassay, Eds., Cham: Springer

Nature Switzerland, 2023, pp. 3–20. doi: 10.1007/978-3-031-40997-4_1.

[102] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

Third Edition, 3rd ed. The MIT Press, 2009.

[103] A. V Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. in

Addison-Wesley series in computer science and information processing. Addison-

Wesley, 1983.

[104] S. Du, R. Kang, Z. Zeng, and E. Zio, “Time-dependent reliability assessment of a

distributed generation system based on multi-valued decision diagrams and Markov

processes,” in Safety and Reliability – Theory and Applications, CRC Press, Jun.

2017. doi: 10.1201/9781315210469-413.

[105] C. Bauer, A. Frink, and R. Kreckel, “Introduction to the GiNaC Framework for

Symbolic Computation within the C++ Programming Language,” J Symb Comput,

vol. 33, no. 1, pp. 1–12, 2002, doi: https://doi.org/10.1006/jsco.2001.0494.

[106] P. Rusnak, J. Rabcan, M. Kvassay, and V. G. Levashenko, “Time-Dependent

Reliability Analysis Based on Structure Function and Logic Differential Calculus,” in

International Conference on Dependability of Computer Systems, 2018.

[107] “The R Project for Statistical Computing.” 2024. Accessed: Apr. 28, 2024. [Online].

Available: https://www.r-project.org/

[108] “ggplot2: system for declaratively creating graphics.” [Online]. Available:

https://ggplot2.tidyverse.org/

[109] Steinbach Bernd and Posthoff Christian, Boolean Differential Calculus. Morgan &

Claypool, 2017. doi: 10.2200/S00766ED1V01Y201704DCS052.

[110] M. Kvassay and E. Zaitseva, “Topological analysis of multi-state systems based on

direct partial logic derivatives,” Springer Series in Reliability Engineering, vol. 0, no.

9783319634227, pp. 265 – 281, 2018, doi: 10.1007/978-3-319-63423-4_14.

[111] M. Mrena, P. Sedlacek, and M. Kvassay, “Linear Fold and Tree Fold in Creation of

Binary Decision Diagrams of Standard Benchmarks,” in Proceedings of the 11th

IEEE International Conference on Intelligent Data Acquisition and Advanced

UNIVERSITY OF ZILINA

152

Computing Systems: Technology and Applications, IDAACS 2021, 2021. doi:

10.1109/IDAACS53288.2021.9660940.

[112] M. Mrena and M. Kvassay, “Comparison of Left Fold and Tree Fold Strategies in

Creation of Binary Decision Diagrams,” in International Conference on Information

and Digital Technologies 2021, IDT 2021, 2021. doi:

10.1109/IDT52577.2021.9497593.

DISSERTATION THESIS

153

Appendices

Appendix A – Pseudocodes ... 154
Appendix B – List of Publications .. 161

UNIVERSITY OF ZILINA

154

Appendix A – Pseudocodes

Appendix A contains pseudocodes of existing algorithms referenced from the main sections

of the thesis. The presented pseudocodes were introduced in the referenced literature and are

not an original contribution of this thesis. All the pseudocodes were adjusted to conform to

the style, notation, and conventions used in this thesis. Otherwise, they contain little to no

modification of the original ideas, though, in some algorithms, we present a simple

straightforward generalization of an algorithm originally proposed just for BDDs. Finally,

considering the implementation aspects, the pseudocodes assume, for simplicity, that the

diagrams use the default order of variables i.e., that for an internal node 𝐴 it holds that

INDEX(𝐴) = LEVEL(𝐴).

procedure CREATETERMINALNODE(value)

 if CONTAINS(terminalTable, value) then

 return LOOKUP(terminalTable, value)

 else

 node ← TERMINALNODE(value) ▷ Create new terminal node

 PUT(terminalTable, value, node)

 return node

 end if

end procedure

Alg. A.1 Factory function for the creation of terminal nodes commonly used in decision diagram

packages

procedure CREATEINTERNALNODE(index, sons)

 if ISREDUNDANT(sons) then

 return HEAD(sons) ▷ Return the first element

 else if CONTAINS(uniqueTable, (index, sons)) then

 return LOOKUP(uniqueTable, (index, sons))

 else

 node ← INTERNALNODE(index, sons) ▷ Create new internal node

 PUT(uniqueTable, (index, sons), node)

 return node

 end if

end procedure

Alg. A.2 Factory functions for the creation of internal nodes commonly used in decision diagram

packages

DISSERTATION THESIS

155

procedure FROMVECTOR(vector)

 stack ← MAKEEMPTYSTACK

 j ← 0

 while j < SIZE(vector) do

 sons ← MAKETUPLE(mn) ▷ Create tuple of mn elements

 for k = 0 to mn do

 sons[k] ← CREATETERMINALNODE(vector[j])

 INCREMENT(j)

 end for

 node ← CREATEINTERNALNODE(n, sons)

 PUSH(stack, (node, n))

 SHRINKSTACK(stack)

 end while

 (root, _) ← PEEK(stack)

 return MDD(root)

end procedure

procedure SHRINKSTACK(stack)

 loop

 (node, i) ← PEEK(stack)

 if i = 1 then ▷ Peeked node is the root node

 return

 end if

 k ← 0

 count ← 0

 repeat

 (_, j) ← PEEK(stack, k) ▷ Peek kth element from the top

 if j = i then

 count ← count + 1

 end if

 k ← k + 1

 until k < SIZE(stack) ∧ i = j

 if count < mi − 1 then

 return

 end if

 sons ← MAKETUPLE(mi − 1)

 for k = 0 to mi − 1 do

 (son, _) ← POP(stack)

 sons[k] ← son

 end for

 node ← CREATEINTERNALNODE(i − 1, sons)

 PUSH(stack, (node, i − 1))

 end loop

end procedure

Alg. A.3 From-vector – static algorithm for the creation of MDD from truth vector [80]

UNIVERSITY OF ZILINA

156

procedure APPLY(left, right, ⊙)

 root ← APPLYSTEP(ROOT(left), ROOT(right), ⊙)

 return MDD(root)

end procedure

procedure APPLYSTEP(left, right, ⊙)

 if CONTAINS(applyCache, (left, right)) then

 return LOOKUP(applyCache, (left, right))

 end if

 if ISTERMINAL(left) ∧ ISTERMINAL(right) then

 node ← CREATETERMINALNODE(VALUE(left) ⊙ VALUE(right))

 else if ISABSORBINGTTERMINAL(⊙, left) ∨ ISABSORBINGTTERMINAL(⊙, right) then

 node ← CREATETERMINALNODE(ABSORBINGELEMENT(⊙))

 else

 ilhs ← LEVEL(left)

 irhs ← LEVEL(right)

 i ← min(ilhs, irhs)

 sons ← MAKETUPLE(mi)

 for k = 0 to mi do

 if ilhs < irhs then

 sons[k] ← APPLYSTEP(SON(left, k), right)

 else

 sons[k] ← APPLYSTEP(left, SON(right, k))

 end if

 end for

 node ← CREATEINTERNALNODE(i, sons)

 end if

 PUT(applyCache, (left, right), node)

 return node

end procedure

Alg. A.4 Entry point ant the recursive step of the apply algorithm [11], [12]

DISSERTATION THESIS

157

procedure SATISFYCOUNT(diagram, value)

 root ← ROOT(diagram)

 iroot ← INDEX(root)

 diff ← DOMAINPRODUCT(1, iroot)

 count ← diff ∗ SATISFYCOUNTSTEP(root, value)

 return count

end procedure

procedure SATISFYCOUNTSTEP(node, value)

 if ISTERMINAL(node) ∧ VALUE(node) = j then

 return 1

 end if

 if ISTERMINAL(node) ∧ VALUE(node) ≠ j then

 return 0

 end if

 if CONTAINS(memo, node) then

 return LOOKUP(memo, node)

 end if

 count ← 0

 i ← LEVEL(node)

 for k = 0 to mi do

 son ← SON(node, k)

 ison ← LEVEL(son)

 sonCount ← SATISFYCOUNTSTEP(son, value)

 diff ← DOMAINPRODUCT(i, ison)

 count ← diff ∗ sonCount

 end for

 PUT(memo, node, count)

 return count

end procedure

procedure DOMAINPRODUCT(i1, i2)

 product ← 1

 i ← i1

 while i < i2 do

 product ← product ∗ mi

 i ← i + 1

 end while

 return product

end procedure

Alg. A.5 Entry point and the recursive step of the satisfy-count algorithm [11]

UNIVERSITY OF ZILINA

158

procedure COFACTOR(diagram, i, a)

 root ← ROOT(diagram)

 if ISTERMINAL(root) then

 return diagram

 else if INDEX(root) = i then

 newRoot ← SON(root, a)

 return MDD(newRoot)

 else

 newRoot ← COFACTORSTEP(root, i, a)

 return MDD(newRoot)

 end if

end procedure

procedure COFACTORSTEP(node, i, a)

 if CONTAINS(memo, node) then

 return LOOKUP(memo, node)

 end if

 if ISTERMINAL(node) then

 return node

 end if

 if INDEX(node) = i then

 return SON(node, a)

 end if

 if INDEX(node) > i then

 return node

 end if

 j ← INDEX(node)

 sons ← MAKETUPLE(mj)

 for k = 0 to mj do

 oldSon ← SON(node, k)

 sons[k] ← COFACTORSTEP(oldSon, i, a)

 end for

 newNode ← CREATEINTERNALNODE(j, sons)

 PUT(memo, node, newNode)

 return newNode

end procedure

Alg. A.6 Entry point and the recursive step of the cofactor algorithm [11]

DISSERTATION THESIS

159

procedure CALCULATENTPPOSTSTEP(node, values)

 if ISTERMINAL(node) then

 value ← VALUE(node)

 if CONTAINS(values, value) then

 return 1.0

 else

 return 0.0

 end if

 end if

 if CONTAINS(memo) then

 return LOOKUP(memo, node)

 end if

 i ← INDEX(node)

 resut ← 0.0

 for k = 0 to mi do

 son ← SON(node, k)

 sonProb ← CALCULATENTPPOSTSTEP(son, values)

 result ← result + sonProb ∗ pi,k

 end for

 PUT(memo, node, result)

 return result

end procedure

Alg. A.7 Post-order NTP calculation algorithm (bottom-up approach) [10]

UNIVERSITY OF ZILINA

160

procedure CALCULATENTPLEVEL(diagram)

 root ← ROOT(diagram)

 stacks ← ARRAY(n + 2) ▷ Create an array of stacks (queues or lists can also be used)

 stackIndex ← INDEX(root)

 PUSH(stacks[stackIndex], root)

 PUT(memo, root, 1.0)

 while stackIndex < n + i do

 stack ← stacks[stackIndex]

 while ISNOTEMPTY(stack) do

 node ← POP(stack)

 i ← INDEX(node)

 if ISINTERNAL(node) then

 nodeNTP ← LOOKUP(memo, node)

 for k = 0 to mi do

 son ← SON(node, k)

 if CONTAINS(memo, son) then

 sonNTP ← LOOKUP(memo, son)

 else

 sonNTP ← 0.0

 ison ← INDEX(son)

 PUSH(stacks[ison], son)

 end ifs

 sonNTP ← sonNTP + nodeNTP ∗ pi,k

 PUT(memo, son, sonNTP)

 end for

 end if

 end while

 while stackIndex < n + 1 ∧ ISEMPTY(stacks[stackIndex]) do

 stackIndex ← stackIndex + 1

 end while

 end while

 return memo

end procedure

Alg. A.8 Level-order NTP calculation algorithm (top-down approach) [10]

DISSERTATION THESIS

161

Appendix B – List of Publications

1. M. Mrena and M. Kvassay, “Comparison of left fold and tree fold strategies in

creation of binary decision diagrams,” in 2021 International Conference on

Information and Digital Technologies (IDT), 2021, pp. 341–352.

2. M. Mrena, P. Sedlacek, and M. Mrena, “Linear fold and tree fold in creation of

binary decision diagrams of standard benchmarks,” in 2021 11th IEEE International

Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), vol. 2, 2021, pp. 1120–1125.

3. P. Rusnak and M. Mrena, “Time dependent reliability analysis of the data storage

system based on the structure function and logic differential calculus,” in Reliability

Engineering and Computational Intelligence, C. van Gulijk and E. Zaitseva, Eds.

Cham: Springer International Publishing, 2021, pp. 179–198

4. M. Mrena, M. Kvassay, and S. Czapp, “Single and series of multi-valued decision

diagrams in representation of structure function,” in Lecture Notes in Networks and

Systems, vol. 484 LNNS, 2022, pp. 176–185.

5. M. Mrena and M. Kvassay, “Experimental analysis of decision diagrams used to

represent structure functions of series-parallel multi-state systems,” in Proceedings

of the 32nd European Safety and Reliability Conference (ESREL 2022), 2022, pp.

1707–1714.

6. M. Mrena, M. Varga, and M. Kvassay, “Experimental comparison of array-based

and linked-based list implementations,” in 2022 IEEE 16th International Scientific

Conference on Informatics (Informatics), 2022, pp. 231–238.

7. M. Mrena and M. Kvassay, “Comparison of single MDD and series of MDDs in the

representation of structure function of series-parallel MSS,” in 2022 IEEE 16th

International Scientific Conference on Informatics (Informatics), 2022, pp. 225–230.

8. P. Galcik, M. Mrena, L. Piatrikova, and S. Stankevich, “Advanced priority queues in

the optics clustering algorithm,” in 2023 International Conference on Information

and Digital Technologies (IDT), 2023, pp. 257–266.

9. M. Mrena and M. Kvassay, “Experimental survey of algorithms for the calculation

of node traversal probabilities in multi-valued decision diagrams,” in Reliability

Engineering and Computational Intelligence for Complex Systems: Design, Analysis

and Evaluation, C. van Gulijk, E. Zaitseva, and M. Kvassay, Eds. Cham: Springer

Nature Switzerland, 2023, pp. 3–20.

10. M. Mrena, M. Kvassay, and S. Stankevich, “Dynamic binary decision diagram

creation using an extended apply algorithm,” in 2023 IEEE 12th International

Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), vol. 1, 2023, pp. 513–518.

UNIVERSITY OF ZILINA

162

11. M. Mrena and M. Kvassay, “Generating monotone Boolean functions using Hasse

diagram,” in 2023 IEEE 12th International Conference on Intelligent Data Acquisition

and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 1,

2023, pp. 793–797.

12. M. Mrena and M. Kvassay, “Efficient computation of logic derivatives using multi-

valued decision diagrams,” in ISMVL 2024 IEEE International Symposium on

Multiple-Valued Logic, 2024, to appear.

13. M. Mrena, M. Kvassay, and E. Zaitseva, “Teddy: Templated decision diagram library,”

SoftwareX, to appear, 2024.

	List of Images
	List of Tables
	List of Algorithms
	Nomenclature and Acronyms
	Introduction
	1 Reliability Analysis
	1.1 Number of system states
	1.1.1 Binary-State Systems
	1.1.2 Multi-State Systems

	1.2 Structure Function
	1.2.1 Structure Function Definition
	1.2.2 Cut and Path Sets

	1.3 Basic System Types
	1.3.1 Series and Parallel Systems
	1.3.2 Series-parallel Systems
	1.3.3 𝑲-out-of-𝒏 Systems
	1.3.4 Complex Systems

	1.4 Topological Analysis
	1.5 Probabilistic Analysis
	1.5.1 Time-independent Analysis
	1.5.1.1 Description of States
	1.5.1.2 System Availability

	1.5.2 Time-dependent Analysis
	1.5.2.1 Description of States
	1.5.2.2 System Availability and Reliability

	1.6 Importance Analysis
	1.6.1 Structural Importance
	1.6.2 Birnbaum’s Importance
	1.6.3 Criticality Importance
	1.6.4 Fussell-Vesely’s Importance

	2 Discrete Function
	2.1 Discrete Function Types
	2.1.1 Boolean Function
	2.1.2 Multiple-Valued Logic Function
	2.1.3 Integer Function
	2.1.4 Pseudo-logic Function

	2.2 Discrete Function Analysis
	2.2.1 Discrete Function Cofactor
	2.2.2 Logical Differential Calculus
	2.2.2.1 Boolean Derivative
	2.2.2.2 Directional Boolean Derivative
	2.2.2.3 Directional Logic Derivative
	2.2.2.4 Integrated Directional Logic Derivative
	2.2.2.4.1 IDPLD of type I
	2.2.2.4.2 IDPLD of type II
	2.2.2.4.3 IDPLD of type III

	2.3 Application of Logic Derivatives
	2.4 Discrete Function Representation
	2.4.1 Arithmetic Expression
	2.4.2 Truth Table
	2.4.3 Truth Vector
	2.4.4 Decision Tree
	2.4.5 Decision Diagram

	3 Decision Diagrams
	3.1 Reduced Ordered Decision Diagrams
	3.1.1 Graph Structure
	3.1.2 Mathematical Foundations
	3.1.3 Canonical Representation
	3.1.4 Number of Internal Nodes
	3.1.5 Order of Variables
	3.1.6 BDD Extensions and Alternatives

	3.2 Decision Diagram Implementation
	3.2.1 Node Sharing
	3.2.2 Diagram Creation
	3.2.2.1 Static Creation
	3.2.2.2 Direct Creation
	3.2.2.3 Direct Creation of BDDs
	3.2.2.3.1 Logical Conjunction and Disjunction
	3.2.2.3.2 Parity Function
	3.2.2.3.3 Structure 𝒌-out-of-𝒏
	3.2.2.3.4 Symmetric Functions

	3.2.2.4 Direct Creation of MDDs
	3.2.2.4.1 Min and Max Functions
	3.2.2.4.2 Structure 𝒌-out-of-𝒏

	3.2.2.5 Dynamic Creation
	3.2.2.5.1 Apply
	3.2.2.5.2 ITE and CASE

	3.2.3 Extended Apply
	3.2.4 Diagram Manipulation
	3.2.4.1 Satisfy-count
	3.2.4.2 Cofactor
	3.2.4.3 Transform
	3.2.4.4 General Diagram Manipulation
	3.2.4.4.1 Result Memoization
	3.2.4.4.2 Order of Variables

	3.3 Decision Diagrams in Reliability Analysis
	3.3.1 Structure Function Representation
	3.3.2 Topological Analysis
	3.3.3 Probabilistic Analysis
	3.3.4 Logic Derivatives

	3.4 MDD-Related Tasks Open for Investigation

	4 Efficient Diagram Creation and Manipulation
	4.1 Generating Random Diagrams
	4.1.1 Min-Max Expressions
	4.1.2 Series-Parallel Trees

	4.2 Improvement of Dynamic Creation
	4.2.1 Order of Evaluation
	4.2.1.1 Left Fold and Tree Fold
	4.2.1.2 Fold Comparison
	4.2.1.2.1 Boolean Functions Representing Adders
	4.2.1.2.2 Various Boolean Functions

	4.2.2 Extended Apply

	4.3 Representation of Series-parallel Systems
	4.3.1 Comparison of Single and Series of Diagrams
	4.3.2 Influence of the Order of Variables

	4.4 System State Frequency Evaluation
	4.5 Efficient Calculation of Logic Derivatives
	4.5.1 Parametrized Procedure
	4.5.2 Specialized (I)DPLD Calculation Algorithm
	4.5.2.1 Introduction of the Algorithm
	4.5.2.2 Experimental Comparison

	5 Probabilistic Evaluation of Decision Diagrams
	5.1 Calculation of Node Traversing Probabilities
	5.1.1 Bottom-Up Approach
	5.1.2 Top-Down Approach
	5.1.3 Applications in Reliability Analysis
	5.1.4 Experimental Comparison of the Approaches

	5.2 Probabilistic Calculations with Time-dependent Probabilities
	5.2.1 Basic Approach
	5.2.2 Symbolic Approach
	5.2.2.1 Description of the Symbolic Approach
	5.2.2.2 Symbolic Computation Example

	5.2.3 Comparison of Symbolic and Basic Approaches
	5.2.3.1 Storage System Example
	5.2.3.2 Random Series-parallel Systems
	5.2.3.3 PLA Benchmark Circuits

	Conclusion
	Resume
	1 Predmet výskumu
	2 Analýza spoľahlivosti
	2.1 Počet stavov systému
	2.2 Štruktúrna funkcia
	2.3 Logické derivácie
	2.4 Topologická analýza
	2.5 Pravdepodobnostná analýza

	3 Rozhodovacie diagramy
	3.1 Štruktúra diagramu
	3.2 Tvorba diagramov
	3.3 Zefektívnenie tvorby diagramov
	3.3.1 Zovšeobecnenie spájania diagramov
	3.3.2 Poradie spájania diagramov

	4 Aplikácia rozhodovacích diagramov v analýze spoľahlivosti
	4.1 Reprezentácia štruktúrnej funkcie
	4.2 Výpočet frekvencie stavov systému
	4.3 Efektívny výpočet logických derivácií
	4.4 Pravdepodobnostné vyhodnotenie diagramov
	4.5 Časovo závislé pravdepodobnostné výpočty

	5 Záver
	Bibliography
	Appendices
	Appendix A – Pseudocodes
	Appendix B – List of Publications

