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ABSTRAKT 

Analýza spoľahlivosti systémov je zložitý proces zahŕňajúci mnoho úloh. Mnohé systémy, 

s ktorými sa v praxi stretávame, označujeme ako komplexné systémy. Okrem bežných úloh 

a problémov analýzy spoľahlivosti sa musíme pri analýze komplexných systémov 

vysporiadať s veľkým rozsahom takýchto systémov, rôznorodosťou komponentov 

a výberom efektívnych algoritmov. Kľúčovým nástrojom analýzy je štruktúrna funkcia, 

ktorá popisuje topológiu systému. Efektívna reprezentácia štruktúrnej funkcie komplexných 

systémov je preto dôležitou súčasťou analýzy. V práci sa zameriavame na reprezentáciu 

štruktúrnej funkcie pomocou rozhodovacích diagramov, ktoré dokážu reprezentovať aj 

rozsiahle funkcie. Efektívna tvorba a spracovanie diagramov sú preto hlavnými témami tejto 

práce. Skúmanie vlastností štruktúrnej funkcie nám umožňuje skúmať vlastnosti systému, 

ktorý funkcia popisuje. Práca sa preto venuje analýze a efektívnej implementácii 

existujúcich algoritmov. Ďalej práca predstavuje niekoľko vylepšení existujúcich 

algoritmov, ktoré majú za cieľ zrýchlenie algoritmov alebo uľahčenie ich použitia. Hlavnými 

prínosmi práce sú predstavenie nového univerzálneho algoritmu na výpočet logických 

derivácií, úprava existujúcich algoritmov na pravdepodobnostnú analýzu, ktorá umožňuje 

použitie týchto algoritmov s časovo závislými pravdepodobnosťami stavov komponentov 

s použitím symbolických výpočtov. Posedným dôležitým prínosom je implementácia 

softvérového nástroja na analýzu spoľahlivosti s použitím rozhodovacích diagramov, ktorý 

implementuje všetky navrhnuté a upravené algoritmy. 

Kľúčové slová: analýza spoľahlivosti; binárny rozhodovací diagram; časovo závislá analýza 

spoľahlivosti; pravdepodobnostná analýza spoľahlivosti; softvérové spracovanie 

rozhodovacích diagramov; štruktúrna funkcia; viachodnotový rozhodovací diagram  

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Príklad_abstrakt
https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Kľúčové_slová
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ABSTRACT 

System reliability analysis is a complicated process involving various tasks. Many of the 

systems we encounter in practice are referred to as complex systems. In addition to the usual 

reliability analysis tasks and problems, when analyzing complex systems, we have to deal 

with the large scale of such systems, the variety of their components, and the selection of 

efficient algorithms. A key analysis tool is the structure function, which describes the 

topology of the system. An efficient representation of the structure function of complex 

systems is, therefore, an important part of the analysis. The thesis focuses on the 

representation of the structure function using decision diagrams, which can also represent 

large-scale functions. Efficient diagram creation and processing are therefore the main topics 

of this thesis. Exploring the properties of the structure function allows for the investigation 

of the properties of the system that the function describes. Therefore, the thesis deals with 

the analysis and efficient implementation of existing algorithms. Furthermore, the thesis 

presents several improvements to the existing algorithms that aim to make the algorithms 

faster or easier to use. The main contributions of the thesis are the introduction of a new 

universal algorithm for the computation of logical derivatives, and the modification of 

existing algorithms for probabilistic analysis, which allows the use of these algorithms with 

time-dependent probabilities of the states of the components using symbolic computations. 

Finally, an important contribution is the implementation of a software library for reliability 

analysis using decision diagrams. The open-source library implements all the proposed and 

modified algorithms. 

Keywords: Binary Decision Diagram; Multi-valued Decision Diagram; probabilistic 

reliability analysis; reliability analysis; software processing of decision diagrams; structure 

function; time-dependent reliability analysis  

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Kľúčové_slová
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𝛼𝓅 number of state vectors corresponding to path 𝓅 
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𝛼𝜙,𝑗 number of state vectors for which the structure function evaluates to 𝑗 

𝑓(𝑎𝑖, 𝒙) cofactor of integer function 𝑓 with respect to variable 𝑥𝑖 and value 𝑎 
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𝒫𝑗  set of all paths leading to the terminal node representing value 𝑗 

ℙ𝑛,𝑚 matrix of component state probabilities 

𝑇𝑗 a terminal node representing value 𝑗  
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Introduction 

Reliability analysis of a system is a complicated process involving several steps. 

Considering the nature of the system and the aim of the analysis, we can describe the system 

either as a Binary-State System (BSS) [1], [2] or a Multi-State System (MSS) [3], [4]. The 

literature offers different mathematical tools for the description of such systems. The one 

that we focus on in this thesis is called structure function [2], [5]. The structure function is 

a mapping from the states of components of the system to the state of the entire system. The 

function alone allows us to perform a topological analysis [6] of the system allowing us to 

compare different system topologies. Furthermore, if component state probabilities are 

available, we can perform a probabilistic analysis and compute more system characteristics 

such as system availability [1], [2]. Also, we can compute various important measures that 

quantify how individual components influence the reliability of the system [7]. 

Depending on the type of the system, the structure function is either a Boolean 

function [8], a Multiple-Valued Logic (MVL) function [9], or an integer function [10]. 

Software processing and analysis of such functions require a suitable representation. One 

such representation is a decision diagram. A decision diagram is a directed acyclic graph 

that is designed for the efficient representation of discrete functions. Two basic types of 

decision diagrams exist. The first, simpler, type is the Binary Decision Diagram (BDD) [11] 

designed for the representation of Boolean functions. The second, more general, type is the 

Multi-valued Decision Diagram (MDD) [12] introduced for the representation of MVL 

functions and integer functions. BDDs and MDDs can be used to represent the structure 

functions of BSS and MSS respectively. 

Systems subjected to reliability analysis exist in different topologies and 

configurations. Some of those systems are regarded as complex systems. The complexity 

may originate from different properties of the system. For example, having components of 

different natures or having dependent components. Moreover, systems consisting of 

numerous components are also regarded as complex. Such properties increase the 

complexity of the structure function representing the system, which, consequently, 

complicates the analysis of such systems. Therefore, the development of new and 

improvement of existing algorithms and approaches to account for increasing complexity is 

an actual and important problem in reliability analysis. 

Decision diagrams are generally regarded as a very efficient representation of the 

structure function, however, the nature of complex systems and the ongoing increase in 
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complexity pose pressure on the continuous improvement of existing techniques and the 

design of new approaches. Therefore, the principal goal of this thesis is the optimization of 

the application of decision diagrams in the reliability analysis of complex systems, which 

results in the following research topics: 

• analysis of existing approaches and algorithms utilized in the representation of 

the structure function by decision diagram and in their subsequent analysis; 

• implementation of a performant and robust software library for the creation and 

manipulation of decision diagrams; 

• evaluation, adjustment, and improvement of existing algorithms for the creation 

and manipulation of decision diagrams; 

• creation of new decision diagram algorithms and methods specialized for the use 

case of topological and probabilistic reliability analysis. 

The thesis has the following structure. Chapter 1 introduces the basics of a general system 

reliability analysis process. It starts with the description of the principal steps of the analysis, 

starting with the identification of the system type description in the form of the structure 

function. Then it proceeds with the presentation of typical system structures with the 

emphasis on the properties of a complex system. Finally, the last part focuses on the 

presentation of various system reliability characteristics, topological analysis, probabilistic 

analysis (time-independent and time-dependent variants), and importance analysis. 

Chapter 2 deals with discrete functions and their relation to reliability analysis. It 

starts with definitions of selected discrete function types – namely the Boolean function, 

MVL function, and integer function – that are relevant to the reliability analysis described 

in Chapter 1. A considerable part of the chapter that follows focuses on logical differential 

calculus (specifically the logic derivatives) as a powerful tool for the analysis of discrete 

functions followed by the description of its applications in the aforementioned reliability 

analysis. The last part of the chapter introduces selected representations of discrete functions 

with an emphasis on their efficiency – which introduces the content of the next chapter. 

Chapter 3 introduces the core topic of the thesis which is the decision diagram. It 

starts with the theoretical description – starting with BDDs and proceeding to the most 

general form used in the thesis – MDD representing an integer function. The main part of 

the chapter deals with practical aspects of the implementation of decision diagrams and also 

introduces our supporting software tool TeDDy – which is one of the practical contributions 

of the thesis. Then it focuses on general MDD manipulating algorithms. The chapter 
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concludes with a description of algorithms that are designed specifically for reliability 

analysis with the utilization of decision diagrams. Finally, the chapter also presents a new 

algorithm for the dynamic merging of decision diagrams and a generalized algorithm for the 

calculation of system state frequencies – which are one of the new results of the thesis. 

Chapter 4 is fully dedicated to the evaluation of research problems introduced in 

Chapter 3. Each of the problems contributes either to the improvement of dynamic diagram 

creation or diagram evaluation. The chapter contains experimental evaluations of existing 

algorithms as well as novel algorithms. The first experiment deals with the analysis of the 

order of diagram merging and its influence on the dynamic creation process. The following 

experiment verifies that the generalized algorithm for diagram merging proposed in 

Chapter 3 is applicable in practice and simplifies the merger of diagrams using 𝑑-ary 

operations. The next experiment shows that the algorithm that we proposed for the 

calculation of system state frequencies is the simplest and fastest solution for BSS as well as 

MSS. Finally, the last contribution that the chapter introduces is a new universal algorithm 

for the calculation of any logic derivative. A description of the algorithm is followed by an 

experimental comparison with generic approaches – which shows that our algorithm is 

considerably faster. We consider this as one of the significant contributions of the thesis. 

Finally, Chapter 5 addresses research problems that deal with the probabilistic 

reliability analysis. It first introduces two existing principal approaches to the calculation of 

so-called node traversing probabilities, which is an essential part of the probabilistic 

analysis. Then, it proceeds with the experimental comparison of the two approaches. The 

contribution obtained from the comparison presents use cases that are suitable for each of 

the two approaches – showing that both approaches are worth implementing in software 

tools and that their correct usage can improve the speed of probabilistic evaluation. 

Furthermore, the chapter deals with time-dependent component state probabilities. It 

discusses two possible approaches. The first, simpler, one uses the existing algorithms with 

little modifications and the second uses manipulation of symbolic expressions. It concludes 

with a comparison of the two approaches showing that a simpler approach performs 

significantly better. However, the contribution lies in the description and verification of the 

utilization of symbolic expressions and their possible advantages.
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1 Reliability Analysis 

A system is a general term describing an entity consisting of components. A component is 

a further indivisible part of the system, which contributes to the functioning of the system. 

Thus, the state of the components determines the state of the system. Typical reliability 

analysis involves tasks such as identification of the importance of individual components, 

identification of situations that cause degradation of system performance, or designing the 

system to meet certain requirements. This chapter deals with the description of the steps of 

the reliability analysis process. 

1.1 Number of system states 

The first step in the reliability analysis is to identify the number of system states. In this step, 

we need to consider the properties of the examined system as well as the aim of the analysis. 

In the following sections, we introduce two principal approaches to the description of the 

number of system states. 

1.1.1 Binary-State Systems 

The first and the simplest approach is to consider a system to be a Binary State System 

(BSS) [1], [2]. A BSS can be in one of two states that are functioning and failed, often 

denoted using numbers 1 and 0 respectively. The decision is clear for systems that are binary 

in their nature. An example of such a system is a logic circuit [13], [14] where the 

components – logic gates – can either function or not. The binary state approach is also 

suitable for a system in which even a slight degradation from the perfectly functioning state 

can cause disaster or damage. Typical examples of such systems include nuclear power 

plants [15] or aviation systems [16]. Naturally, we can use the BSS approach for a system 

that does not belong to either one of the above-mentioned types, for example, for a system 

where performance levels are not discrete. In such a case a principal task is to find 

a threshold separating working and failed states.  

1.1.2 Multi-State Systems 

One of the advantages of BSS is the simplicity of the model. However, the binary approach 

does not suit well for all the system types. Many systems can operate at several discrete 

performance levels. A representative example of such systems is different types of 

distribution networks [17] that operate using their full capacity but can also operate at 
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multiple levels of reduced capacity. We usually describe the states as e.g., perfectly 

functioning, functioning, and failed and denote them using 0 for the failed state, 𝑚 − 1 for 

the perfectly functioning state (where 𝑚 is the number of states), and natural numbers in 

between 0 and 𝑚 − 1 for the intermediate states. Because of the multiple states, we designate 

such systems as Multi-State Systems (MSS). 

The number of components and system states can vary depending on the type of the 

system. Consequently, we recognize two types of MSS. The first type is homogeneous MSS 

where each component and the system itself have the same number of states. On the other 

hand, nonhomogeneous MSS and its components can have a different number of states. We 

usually encounter nonhomogeneous MSS when we examine systems that consist of 

components that are different in their nature. An example of such systems is healthcare 

systems [18], [19] that usually include humans, hardware, and software. 

1.2 Structure Function 

1.2.1 Structure Function Definition 

After the identification of the number of system and component states, we proceed with the 

creation of a mathematical description of the examined system. The description must include 

the dependency of the state of the system on the state of its components. We call such 

a description a structure function. The structure function of a BSS is a mapping of the 

following form [1], [20]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1}𝑛 → {0,1}, (1.1) 

where 𝑛 is the number of components of the system, 𝑥𝑖 models state of the 𝑖th component for 

𝑖 = 1,2 … , 𝑛 and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a state vector that holds the states of all components. 

Later in the thesis, we will show that the definition (1.1) agrees with the definition of the 

Boolean function. 

We can view a homogeneous MSS as a generalization of BSS. Therefore, its 

structure function is a similar mapping of the form [5]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚 − 1}𝑛 → {0,1, … , 𝑚 − 1}, (1.2) 

where 𝑛 is the number of components of the system, 𝑚 is the number of system and 

component states, 𝑥𝑖 models state of the 𝑖th component for 𝑖 = 1,2 … , 𝑛 and 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛) is the state vector. Finally, we consider a nonhomogeneous MSS where 
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components and the system can have a different number of states. Its structure function is 

a further generalized mapping of the form [5]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚1 − 1} × … × {0,1, … , 𝑚𝑛 − 1}

→ {0,1, … , 𝑚 − 1}, 
(1.3) 

where 𝑛 is the number of components of the system, 𝑚 is the number of system states, 𝑚𝑖 is 

the number of states of the 𝑖th component, 𝑥𝑖 models state of the 𝑖th component for 𝑖 =

1,2 … , 𝑛 and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the state vector. Definitions (1.2) and (1.3) agree with 

the definition of the Multiple-Valued Logic function and integer function that we will 

describe in the following chapter. 

Since the structure function describes a system, we can study the properties of the 

system by studying the properties of the structure function. One of the properties is the 

monotonicity of the function. If the structure function of a system is monotonic 

(non-decreasing), we say that the system is coherent [1], [21] i.e., there are no situations in 

which failure or degradation of performance of a component results in repair or improvement 

of the performance of the system. The opposite of a coherent system is a noncoherent 

system. For a structure function of a BSS to be monotonic, it must hold for each pair of state 

vectors of the form (.𝑖 , 𝒙) that: 

 𝜙(1𝑖 , 𝒙) ≥ 𝜙(0𝑖, 𝒙), (1.4) 

where the notation (𝑎𝑖, 𝒙) denotes a state vector where the value of 𝑥𝑖 = 𝑎. Similarly, for 

a structure function of an MSS to be coherent, it must hold for each pair of state vectors of 

the form (.𝑖 , 𝒙) that: 

 𝜙(𝑠𝑖, 𝒙) ≥ 𝜙((𝑠 − 1)𝑖 , 𝒙), (1.5) 

where 𝑠 = 1,2, … , 𝑚𝑖 − 1. 

1.2.2 Cut and Path Sets 

One of the useful characteristics of a system is a set of components whose simultaneous 

operation or failure is essential for the state of the system. Two significant types of sets for 

the reliability analysis are minimal cut sets and minimal path sets. A cut set of a BSS is a set 

of its components whose simultaneous failure causes failure of the system given that the 

system was operational. For a set to be a Minimal Cut Set (MCS) [22] it must hold that 

removal of any component from the set would result in the set no longer being a cut set [1], 

[7] i.e., if we consider that all the components of the MCS are failed then a repair of any of 
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the components causes the system to become functional. Each MCS has a corresponding 

state vector known as a Minimal Cut Vector (MCV) [23]. 

To extend the idea of the MCSs and MCVs to MSS we consider each system state 

individually. Both MCS and MCV can be generalized for MSS, but the generalized 

definition is more intuitive when we consider MCV. We say that a state vector is MCV with 

respect to state 𝑗 of the system if an improvement of the state of any component whose state 

can be improved (the component is not perfectly functioning) causes the system to reach 

a state at least 𝑗 given that the system is in a state worse than 𝑗 for the state vector. 

Analogous to cut sets are path sets. A path set of a BSS is a set of components whose 

simultaneous functioning ensures the functioning of the system. The set is a Minimal Path 

Set (MPS) [22] if the removal of any component from the set would cause the set to no 

longer be a path set [1], [7]. A state vector corresponding to an MPS is called a Minimal 

Path Vector (MPV). MPV can also be generalized for MSS. We say that a state vector is 

MPV with respect to state 𝑗 of the system if degradation of performance of any component 

causes degradation of performance of the system to a state worse than 𝑗 given that the system 

is in state 𝑗 or better for the state vector. 

1.3 Basic System Types 

Real-world systems exist in different topologies and configurations. Some are simple and 

we encounter them either as standalone systems or as a part of other systems and some are 

more complicated because of their properties or size. In this section, we introduce typical 

examples of both kinds. 

1.3.1 Series and Parallel Systems 

Series and parallel systems are one of the simplest system types. Series BSS is functioning 

if and only if all its components are functioning. Similarly, parallel BSS is functioning if and 

only if at least one of its components is functioning. Fig. 1.1 shows Reliability Block 

Diagrams (RBD) representing a series and a parallel system consisting of three components. 

The system is functioning if and only if there exists a path in the diagram connecting left and 

right black circles and all the components on the path are functioning. 
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x1 x2 x3
  

x1

x2

x3  

Fig. 1.1 Reliability Block Diagrams depicting series system (left) and parallel system (right) 

The structure function of a series BSS has the following form [1], [2]: 

 
𝜙serial(𝒙) = ⋀ 𝑥𝑖

𝑛

𝑖=1

, (1.6) 

where the ∧ denotes logical conjunction (AND) and 𝑛 is the number of components. 

Similarly, the structure function of a parallel BSS has the following form [1], [2]: 

 
𝜙parallel(𝒙) = ⋁ 𝑥𝑖

𝑛

𝑖=1

, (1.7) 

where the ∨ denotes logical disjunction (OR) and 𝑛 is the number of components. 

Naturally, MSS also exists in series and parallel topologies. The literature offers 

several functions that we can use to represent series and parallel connections. For the series 

topology, a sensible option is to use the min function (that returns the minimum of its 

arguments). To explain the rationale behind the min function let us consider the distribution 

network depicted in Fig. 1.2 and assume that each edge can be in one of three states offering 

different transportation capacities. Obviously, the throughput of the network from the source 

node (A) to the sink node (B) is limited by the edge with the lowest capacity – the minimum 

of the capacities of all edges.  

A reasonable function to use for the parallel topology is the max [3], [24] function (returns 

the maximum of its arguments). To rationalize the choice function let us consider the 

distribution network depicted in Fig. 1.3 and, again, assume that each edge can be in one of 

three states offering different transportation capacities. Also, let us assume that the 

processing capacity of node B is limited – it can process at most 𝑐𝑚𝑎𝑥 units, where 𝑐𝑚𝑎𝑥 is 

the maximum of the capacities of the edges. Hence, the throughput of the network is the 

maximum of the capacities of the edges. 

A Bx1 x2 x3
 

Fig. 1.2 Distribution network with series topology and unreliable edges 
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A Bx2

x1

x3
 

Fig. 1.3 Distribution network with parallel topology and unreliable edges 

Considering an alternative where the processing capacity of node B is not limited, we may 

see another sensible alternative, which is to use the sum function (returns the sum of its 

arguments) to describe the throughput.  

1.3.2 Series-parallel Systems 

We usually encounter series and parallel systems as parts of a more complicated system type 

– a series-parallel system, which is a result of combining series and parallel topologies. Since 

the system is a combination of series and parallel systems, we can use the properties of those 

systems to describe the series-parallel system. Its structure function is therefore 

a composition of AND and OR operations in the case of BSS and e.g., min and max 

operations in the case of MSS. Let us consider the system depicted using RBD in Fig. 1.4. 

Assuming the system is BSS, its structure function has the following form: 

 𝜙(𝒙) = 𝑥1 ∧ (𝑥2 ∨ 𝑥3). (1.8) 

Notice that instead of a variable, the second argument of the ∧ operator is the (𝑥2 ∨ 𝑥3) 

expression. Using such nesting expressions, we can describe any series-parallel system. 

x2

x3

x1

 

Fig. 1.4 Reliability Block Diagram depicting series-parallel system consisting of three components 

RBD allows us to neatly visualize the MCSs and MPSs of a system. Let us consider the 

system depicted in Fig. 1.4 with two MCSs {1} and {2,3} with corresponding state vectors 

(0,1,1) and (1,0,0) respectively. The notation {2,3} denotes a set containing the second and 

third components respectively. Notice that if any of the 0 elements in the vector would 

improve to 1 the system would become operational. Fig. 1.5 shows the MCSs in the RBDs 

using the grey color for the elements of the set. Furthermore, let us consider the state vector 

(0,0,0). The vector corresponds to the cut set {1,2,3}. The set is not MCS because if we 

remove, for instance, the component 1 from the set the resulting set will still be a cut set. 
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x2

x3

x1

 

x2

x3

x1

 

Fig. 1.5 Minimal Cut Sets (grey) of a series-parallel system 

Similarly, the system has two MPSs {1,2} and {1,3} with corresponding state vectors (1,1,0) 

and (1,0,1). If any of the 1 elements would decrease to 0, the system would stop being 

operational. Fig. 1.6 shows the MPSs in the RBDs using the white color for the elements of 

the set. 

x2

x3

x1

 

x2

x3

x1

 

Fig. 1.6 Minimal Path Sets (white) of a series-parallel system 

Finally, let us consider the state vector (1,1,1), which corresponds to the path set {1,2,3}. 

The system in the state described by the set is operational. If we remove component 2 from 

the set, the system would still be operational. Therefore, the set is not an MPS. 

1.3.3 𝑲-out-of-𝒏 Systems 

𝐾-out-of-𝑛 system consists of 𝑛 components and is functioning if at least 𝑘 components are 

functioning. It is one of the common system types that we encounter in practice in areas such 

as software and hardware engineering [25]. The nature of the system is ideal for providing 

redundancy and therefore increasing fault tolerance [26] of the system. For example, 

if a 𝑘-out-of-𝑛 system serves as a subsystem of some bigger system, it can operate even 

when some of its components fail and therefore provide the time needed to either repair or 

replace failed components. 

1.3.4 Complex Systems 

A considerable number of systems that we encounter in practice are so-called complex 

systems. The complexity may have distinct causes for different system types. One of the 

more obvious properties is the number of components. For example, we consider 

a series-parallel system with a substantial number of components [24] to be a complex 

system. In the analysis of the system, we need to put a great emphasis on the efficient 

representation of the structure function. Moreover, various noncoherent systems are also 
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complex. In this case, the reason for the complexity is that certain algorithms used in 

reliability analysis assume coherency and therefore are not applicable. An example of 

a system type from this category is logical circuits [14], especially with a higher number of 

gates. Finally, the complexity may also originate from the different nature of components of 

the system, which is often a case for nonhomogeneous MSS. We may encounter such 

systems in the analysis of healthcare systems [27] where different elements such as humans, 

software, and hardware interoperate within a single system. A challenging task in the 

analysis of such systems is the development of algorithms and a suitable representation for 

the system. 

1.4 Topological Analysis 

The structure function captures the topology of the system allowing us to perform 

a topological analysis of the system, which we can subsequently use to compare systems 

with different topologies. This sort of analysis can be useful in the process of system design. 

A basic measure that we use to compare topologies of MSS is the relative frequency of 

a system state 𝑗 [6]: 

 𝐹𝑟=𝑗 = TD(𝜙(𝒙) ↔ 𝑗), (1.9) 

where 𝜙(𝒙) is structure function, 𝑗 ∈ {0,1, … , 𝑚 − 1} where 𝑚 is the number of system 

states and TD(. ) denotes truth density of a Boolean-valued function i.e., the relative number 

of state vectors for which the function takes value 1. Notice that the structure function 𝜙(𝒙) 

of an MSS is not a Boolean-valued function. To transform the function into Boolean-valued 

form we use the logical biconditional ↔ defined as follows: 

 𝜙(𝒙) ↔ 𝑗 = {
 1
 0

𝜙(𝒙) = 𝑗
  otherwise.

 (1.10) 

Relative frequency can also include multiple states in the form of the relative frequency of 

system states greater than 𝑗 defined as [6]: 

 

𝐹𝑟≥𝑗 = TD(𝜙(𝒙) ≥ 𝑗) = ∑ 𝐹𝑟ℎ

𝑚−1

ℎ=𝑗

, (1.11) 

where 𝑗 ∈ {1,2, … , 𝑚 − 1}. The argument of the truth density is defined using the logical 

biconditional as: 
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𝜙(𝒙) ≥ 𝑗 = ⋁(𝜙(𝒙) ↔ ℎ)

𝑚−1

ℎ=𝑗

= {
 1
 0

𝜙(𝒙) ≥ 𝑗
  otherwise

, (1.12) 

where the ∨ operator denotes logical disjunction. 

Notice that for BSS we do not need to transform the structure function using the 

logical biconditional since the structure function of a BSS is a Boolean function i.e., we can 

directly calculate 𝐹𝑟=1 = TD(𝜙(𝒙)) and 𝐹𝑟=0 = 1 − 𝐹𝑟=1. 

1.5 Probabilistic Analysis 

The topological analysis considers only the topology of a system. It assumes that each state 

of a component is equally probable, which however is often not the case. Some components 

are more reliable than others, which influences behavior and consequently the reliability of 

the system. Therefore, in order to describe and analyze such systems more precisely, we 

need to use probabilistic analysis, which considers component state probabilities. These 

probabilities can be either time-independent or time-dependent and thus we also differentiate 

time-independent or time-dependent probabilistic analysis. 

1.5.1 Time-independent Analysis 

1.5.1.1 Description of States 

We denote time-independent probabilities of BSS component states as: 

 𝑝𝑖 = Pr{𝑥𝑖 = 1} , 

𝑞𝑖 = Pr{𝑥𝑖 = 0}, 
(1.13) 

where 𝑖 = 1,2, … , 𝑛. 𝑝𝑖, which is a probability that 𝑖th component is functioning is known as 

component reliability, and similarly, a probability that 𝑖th component failed 𝑞𝑖 is known as 

component unreliability. Similarly, for an MSS we denote component state probability as: 

 𝑝𝑖,𝑘 = Pr{𝑥𝑖 = 𝑘}, (1.14) 

where 𝑖 = 1,2, … , 𝑛 and 𝑘 = 0,1, … , 𝑚𝑖 − 1. 

1.5.1.2 System Availability 

Structure function and component state probabilities allow us to calculate global system 

characteristics known as system availability and unavailability. Availability of BSS agrees 

with the probability that the system is in state 1 and is defined as follows [1], [2]: 

 𝐴(𝒑) = Pr{𝜙(𝒙) = 1}, (1.15) 
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where 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛) is a vector of component reliabilities. The unreliability of a BSS, 

which is a complementary measure for the availability and agrees with the probability that 

the system is in state 0, is defined as follows [1], [2]: 

 𝑈(𝒒) = Pr{𝜙(𝒙) = 0}, (1.16) 

where 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝑛) is a vector of component unreliabilities. 

To generalize measures of availability and unavailability for MSS we consider two 

sets of system states. The first set contains states worse than state 𝑗 and the second set 

contains state 𝑗 and all better states. States in the second set represent the acceptable 

performance of the system for a particular use case and the state 𝑗 represents the boundary 

state. Then, we define the availability of MSS with respect to state 𝑗, which agrees with the 

probability that the system is in state 𝑗 or better, as follows [3], [4], [5]: 

 𝐴≥𝑗(𝒑) = Pr{𝜙(𝒙) ≥ 𝑗}, (1.17) 

for 𝑗 = 1,2, … , 𝑚 − 1. Similarly, we define the unavailability of MSS with respect to state 

𝑗, which agrees with the probability that the system is in a state worse than 𝑗 as [3], [4], [5]: 

 𝑈≥𝑗(𝒑) = Pr{𝜙(𝒙) < 𝑗}, (1.18) 

for 𝑗 = 1,2, … , 𝑚 − 1. Lastly, let us notice that in the case of an MSS, the vector 𝒑 is actually 

a matrix ℙ𝑛,max(𝑚𝑖) for 𝑖 = 1,2, … , 𝑛 – where 𝑝𝑖,𝑘 denotes an element of the matrix. 

However, for the consistency with the literature, we keep the notation 𝐴≥𝑗(𝒑). 

Measures of system availability and unavailability allow us to examine system 

reliability taking into account not only the topology captured by the structure function but 

also the probabilities of component states. This allows us to compare not only different 

system topologies but also investigate how the reliabilities of individual components 

influence the overall availability of the system. 

In addition to system availability and unavailability, we can also define probabilities 

of individual system states i.e., a probability that a system is in state 𝑗 [28], which we denote 

as Pr{𝜙(𝒙) = 𝑗}. 

The system states probabilities, availability, and unavailability are closely tied, and 

we can compute one in terms of the other using the following formulas [28]: 

 
Pr{𝜙(𝒙) = 𝑗} = {

1 − 𝐴≥1(𝒑)

𝐴≥𝑗(𝒑) − 𝐴≥𝑗+1(𝒑)

𝐴≥𝑚−1(𝒑)

    

if 𝑗 = 0

if 𝑗 ∈ {1,2, … , 𝑚 − 2}

if 𝑗 = 𝑚 − 1
, 

 

(1.19) 
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 𝐴≥𝑗 = ∑ Pr{𝜙(𝒙) = 𝑗}

𝑚−1

ℎ=𝑗

, 𝑈≥𝑗 = ∑ Pr{𝜙(𝒙) = 𝑗},

𝑗−1

ℎ=0

 (1.20) 

for 𝑗 ∈ {1,2, … , 𝑚 − 1}. Another important characteristic of a system is expected system 

performance. Most of the time, the numbers that we use to describe system states are abstract 

i.e., they do not have a physical meaning. Expected system performance allows us to 

describe a system in terms of physical performance using the following definition [28]: 

 

𝑂(𝒑) = ∑ 𝑜𝑗 Pr{𝜙(𝒙) = 𝑗} =

𝑚−1

𝑗=0

𝑜0 + ∑ (𝑜𝑗 − 𝑜𝑗−1)𝐴≥𝑗(𝒑)

𝑚−1

𝑗=1

, (1.21) 

where 𝑜𝑗 denotes physical performance associated with system state 𝑗. As an example, let us 

consider a transportation network that can operate in 4 possible states denoted by numbers 

0,1,2, and 3. Physical performance associated with the states are the amounts 0, 100, 200,  

and 300 of units respectively that the network can transport. So, for example, if the system 

is in state 2 it can transport 200 units. Therefore, if there is a requirement that the network 

must be able to transport at least 170 units we need to calculate system availability with 

respect to state 2 since it is the first state that satisfies the requirements. 

1.5.2 Time-dependent Analysis 

1.5.2.1 Description of States 

A limitation of the time-independent analysis is the assumption that the component state 

probability is a constant. However, if we observe a component of a real-world system, we 

would notice that the component state probability evolves. Specifically, the component state 

probability usually deteriorates in time. This can be intuitively explained, for example, by 

physical wear and tear of technical components. 

Since we describe the system as an MSS, we consequently need to describe the 

change of state of the 𝑖th component in time. For such a description, we use a state function 

𝑧𝑖(𝑡). Unfortunately, the number of ways in which the state of a component can change is 

infinite. For instance, let us consider four specific state functions of a 3-state component 

depicted in Fig. 1.7. Each chart in the figure describes a possible evolution of the component 

state in time. 



UNIVERSITY OF ZILINA 

24 

 

  

  

Fig. 1.7 Different state functions modeling the behavior of a 3-state component 

The set of values of each state function is {0,1, … , 𝑚𝑖 − 1} in the most general case of 

nonhomogeneous MSS. If we consider all possible functions at time 𝑡, then the proportion 

of functions that take value 𝑠 agrees with the probability that 𝑖th component is in state 𝑠. 

Consequently, we can introduce a discrete random variable 𝑍𝑖 describing all states of the 𝑖th 

component [3], [29], [30]: 

 𝑝𝑖,𝑠 = Pr{𝑍𝑖 = 𝑠} , 𝑠 = 0,1, … , 𝑚𝑖 − 1, 

∑ 𝑝𝑖,𝑠

𝑚𝑖−1

𝑠=0

= 1 
(1.22) 

Since random variable 𝑍𝑖 changes in time we can define a function of time 𝑍𝑖(𝑡) and then 

define a stochastic process as a collection of random variables [5], [31]: 

 {𝑍𝑖(𝑡); 𝑡 ≥ 0}. (1.23) 

Finally, we define time-dependent reliability and unreliability of BSS component using the 

function of time as: 

 𝑝𝑖(𝑡) = Pr{𝑍𝑖(𝑡) = 1} , 

𝑞𝑖(𝑡) = Pr{𝑍𝑖(𝑡) = 0} , 

𝑝𝑖(𝑡) + 𝑞𝑖(𝑡) = 1, 𝑡 > 0. 

(1.24) 

And time-dependent MSS’s component state probabilities as: 

 𝑝𝑖,𝑠(𝑡) = Pr{𝑍𝑖(𝑡) = 𝑠} , 𝑠 = 0,1, … 𝑚𝑖 − 1, (1.25) 
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∑ 𝑝𝑖,𝑠(𝑡)

𝑚𝑖−1

𝑠=0

= 1, 𝑡 ≥ 0. 

Subsequently, we can use time-dependent component state probabilities along with the 

structure function to define the system state function [1], [5]: 

 𝒁(𝑡) = 𝜙(𝑍1(𝑡), 𝑍2(𝑡), … , 𝑍𝑛(𝑡)) = 𝜙(𝒁(𝑡)), (1.26) 

where 𝒁(𝑡) is a vector of component state functions. 

1.5.2.2 System Availability and Reliability 

Reliability is one of the basic time-dependent characteristics of a BSS. It is defined as the 

probability that the system operates without failure in the time interval (0, 𝑡⟩ given that the 

system was functioning at time 𝑡 = 0: 

 𝑅(𝑡) = Pr{𝑇𝑓 > 𝑡}; 𝑅(0) = 1, (1.27) 

where 𝑇𝑓 is a random variable representing time to failure [1]. A complementary 

characteristic to reliability is system unreliability, which represents the probability that the 

system will fail in the time interval (0, 𝑡⟩ given that it was functioning at time 𝑡 = 0: 

 𝐹(𝑡) = Pr{𝑇𝑓 ≤ 𝑡}; 𝐹(0) = 1. (1.28) 

As time progresses the reliability of the system degrades inevitably leading to a failure. 

Maintainability of a BSS is the ability of the system to be maintained in or restored to an 

acceptable state. Mathematically, we describe maintainability using a function that defines 

the probability that the system maintenance will be performed in a specific period: 

 𝑀(𝑡) = Pr{𝑇𝑚 ≤ 𝑡}, (1.29) 

where 𝑇𝑚 is a random variable identifying the time needed for system maintenance. The 

exact meaning of the random variable depends on the type of maintenance that can either be 

preventive or corrective [1]. Furthermore, the ability to be repaired implies that there exist 

two types of systems repairable and non-repairable while maintainability describes only the 

repairable systems. The characteristics of reliability and maintainability can be combined 

into the availability and unavailability of BSS, which we also introduced in the case of time-

independent analysis. The time-dependent system availability and unavailability are defined 

using the system state function as [1]: 

 𝐴(𝑡) = Pr{𝜙(𝒁(𝑡)) = 1}, (1.30) 

 𝑈(𝑡) = Pr{𝜙(𝒁(𝑡)) = 0} = 1 − 𝐴(𝑡). (1.31) 
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We can generalize system availability and unavailability using the same rationale as in the 

time-independent analysis by splitting the systems state into two sets of acceptable and 

unacceptable states where the state 𝑗 is the first acceptable state. Then we define the time-

dependent availability of MSS with respect to state 𝑗 as [3], [5]: 

 

𝐴≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) ≥ 𝑗} = ∑ Pr{𝜙(𝒁(𝑡)) = ℎ}

𝑚𝑖−1

ℎ=𝑗

, (1.32) 

and time-dependent system unavailability of MSS with respect to state 𝑗 as [3], [5]: 

 
𝑈≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) < 𝑗} = ∑ Pr{𝜙(𝒁(𝑡)) = ℎ} = 1 − 𝐴≥𝑗(𝑡)

𝑗−1

ℎ=0

. (1.33) 

We can see that a principal difference between time-independent and time-dependent 

probabilistic analysis is that characteristics such as system availability or component state 

probabilities are functions of time in the latter case instead of being a single number in the 

former case. 

1.6 Importance Analysis 

Topological and probabilistic analysis provide means of studying systems using system 

characteristics such as system state frequency or system availability. Though we can use the 

characteristics to study how for example a change in the component availability affects the 

overall availability of the system, the characteristics nevertheless describe the entire system. 

For quantification of the influence of individual components, we use characteristics known 

as Importance Measures (IMs). The literature presents various IMs. In this section, we 

briefly introduce the commonly used ones. 

1.6.1 Structural Importance 

Structural Importance (SI) represents one of the simplest IMs. It considers only the topology 

of the system and is part of the topological analysis. For a BSS SI is defined as follows [7]: 

 
SI𝑖 =

∑ (𝜙(1𝑖, 𝒙) − 𝜙(0𝑖 , 𝒙))(.𝑖,𝒙)∈{0,1}𝑛−1

2𝑛−1
, (1.34) 

where (.𝑖 , 𝒙) is a state vector without 𝑖th component, {0,1}𝑛−1 represents all possible state 

vectors of the form (.𝑖 , 𝒙) and (𝑎𝑖, 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛). It agrees with the 

relative number of situations when the 𝑖th component is critical for the system activity i.e. 

when the state of the component decides whether the system is functioning or failed. Since 
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the SI considers only the topology, it is useful in situations when we do not have information 

about component reliabilities. 

The SI measure can also be generalized to describe components of MSS. However, 

multiple components and system states allow different interpretations of the measure. 

Therefore, the authors proposed several definitions. A definition similar to (1.34) 

considering a specific change in the component state can be found in [32]. 

1.6.2 Birnbaum’s Importance 

One of the limitations of the SI is that it does not consider component state probabilities. 

Birnbaum’s importance (BI) [33] considers system topology as well as component state 

probabilities. The literature offers multiple ways of calculating BI for BSS [7], [34], [35]: 

BI𝑖 = Pr{𝜙(1𝑖, 𝒙) − 𝜙(0𝑖, 𝒙) > 0} (1.35) 

 
=

𝜕𝐴(𝒑)

𝜕𝑝𝑖
=

𝜕𝑈(𝒑)

𝜕𝑞𝑖
 (1.36) 

 = 𝐴(1𝑖, 𝒑) − 𝐴(0𝑖 , 𝒑) = 𝑈(0𝑖 , 𝒒) − 𝑈(1𝑖, 𝒒), (1.37) 

where 𝐴(1𝑖, 𝒑), 𝐴(0𝑖, 𝒑) denotes system availability if 𝑖th component is always functioning 

or failed respectively and similarly 𝑈(1𝑖, 𝒑), 𝑈(0𝑖, 𝒑) denotes system unavailability if 𝑖th 

component is always functioning or failed respectively.  

In [7] the authors present several meanings of the definitions (1.35) – (1.37). 

Definition (1.35) agrees with the probability that failure (repair) of the 𝑖th component 

coincides with failure (repair) of the system. Definition (1.36) defines BI in terms of the rate 

at which system availability (unavailability) improves (degrades) with the reliability 

(unreliability) of the component. Lastly, according to definition (1.37), BI describes the 

decrease in system availability if 𝑖th component fails or similarly a decrease of system 

unavailability if 𝑖th component is repaired. 

As with the SI, the authors proposed several generalizations of BI for MSS. 

A straightforward generalization that considers a specific change in a component state with 

respect to system state 𝑗 following the definition (1.37) is presented in [32] and a more 

general version that incorporates multiple changes of a component state can be found in [7]. 

Also, a different approach for homogeneous MSS can be found in [28]. 

1.6.3 Criticality Importance 

One of the drawbacks of BI is that it does not consider the current value of the component 

availability/unavailability. For example, the component might be highly influential 
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according to BI but the probability that the component will fail might be very small, which 

practically reduces the importance of the component since it is almost always functioning. 

Criticality importance (CI) is defined in terms of BI aiming to solve the drawback by 

including component availability/unavailability in the calculation. There exist two versions 

of CI one defined in terms of system functioning (CsI) and the other one defined in terms of 

system failure (CfI). For a BSS the definitions have the following form [7]: 

 C𝑓I𝑖 = BI𝑖

𝑞𝑖

𝑈(𝒒) 
, (1.38) 

 C𝑠I𝑖 = BI𝑖

𝑝𝑖

𝐴(𝒒) 
. (1.39) 

CfI measures the probability that the system failed because of the 𝑖th component given that 

the system failed and CsI measures the probability that 𝑖th component is critical for the system 

functioning given that the system is functioning. Since the CI is defined in terms of BI its 

generalization for MSS follows the generalized BI using availability or unavailability with 

respect to a given system state 𝑗. 

1.6.4 Fussell-Vesely’s Importance 

A component contributes to the failure of a system when the failure of the component causes 

at least one MCS containing the component to fail. Therefore, a measure known as Fussell-

Veseley’s importance (FVI), which for a BSS is defined in terms of MCSs as follows [7]: 

 FV𝑐I𝑖 =
Pr{MCSs(𝑖)}

𝑈(𝒒)
, (1.40) 

where the notation {MCSs(𝑖)} represents the event that at least one MCS containing 

component 𝑖 has failed. On the other hand, the component also contributes to the system's 

functioning. Therefore, another way to define FVI for a BSS is in terms of MPSs [7], [36]: 

 FV𝑝I𝑖 =
Pr{MPSs(𝑖)}

𝐴(𝒑)
, (1.41) 

where the notation {MPSs(𝑖)} represents the event that at least one MPS containing 

component 𝑖 is functioning. The literature offers several generalizations of FVI  [37], [38], 

[39] for MSS, however, note that their meaning does not correspond to the FVI defined for 

BSS since the generalizations are not based on MCSs but use different approaches. 
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2 Discrete Function 

In section 1.2, we introduced multiple definitions of the structure function (1.1), (1.2), and 

(1.3). Each definition has a form of a discrete function. As we also showed, the structure 

function is an integral part of the topological analysis, probabilistic analysis, and calculations 

of various importance measures. Therefore, discrete functions are one of the fundamental 

tools for reliability analysis. Thus, this chapter focuses on the introduction of discrete 

function types that are relevant for the reliability analysis. Also, it deals with the analysis of 

properties of discrete functions, which we can subsequently interpret as properties of the 

described system. Finally, the chapter presents several approaches to the representation of 

the discrete function. Since we aim at the analysis of complex systems with a high number 

of components, we mainly focus on the efficiency of the representation. At the end of the 

chapter, we introduce decision diagrams as a suitable representation of the structure function 

in the analysis of complex systems. 

2.1 Discrete Function Types 

In general, a function is a mapping from a domain to a codomain. A discrete function is 

a function in which each variable takes values from a finite set – the domain of the variable. 

The domain of a discrete function itself is a Cartesian product of the domains of all its 

variables. We denote the elements of the domain using vector notation 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

where 𝑛  is the number of variables and 𝑥𝑖 denotes 𝑖th variable. We sometimes refer to 𝒙 as 

the input vector. The codomain of a discrete function is also finite. In general, a discrete 

function is defined as the following mapping [10]: 

 𝑓(𝒙):×𝑖=1
𝑛 𝒟𝑖 → ℒ, (2.1) 

where the operator × denotes the Cartesian product and 𝑛 is the number of variables. The 

sets 𝒟𝑖 for 𝑖 = 1,2, … , 𝑛 are domains of variables and ℒ is the codomain of the function (set 

of values of the function). Note that the sets 𝒟𝑖 and ℒ  are finite but not necessarily of the 

same cardinalities. Depending on the cardinalities of the sets 𝒟𝑖 and ℒ, we recognize 

different types of discrete functions whose description follows. 

2.1.1 Boolean Function 

The simplest and the most well-known type of discrete function is the Boolean function. 

Variables of the Boolean function take values from the set {0,1}, where the values 0 and 
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1 are often denoted as false and true respectively. The definition (2.1) simplifies to the 

following form [8]: 

 𝑓(𝒙):×𝑖=1
𝑛 {0,1} → {0,1}. (2.2) 

Let us note that the values 0 and 1 can be interpreted differently such as “off–on” or “failed–

working”, depending on the application of the Boolean function. 

2.1.2 Multiple-Valued Logic Function 

The Multiple-Valued Logic (MVL) function can be seen as a generalization of the Boolean 

function where, instead of just two, the MVL variables take values from the set 

{0,1, … , 𝑚 − 1}, where 𝑚 ∈ ℕ and 𝑚 > 1. The codomain of the MVL function is also the 

set {0,1, … , 𝑚 − 1}. For the MVL function, the definition (2.1) has the following form [9]: 

 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚 − 1} → {0,1, … , 𝑚 − 1}. (2.3) 

Finally, let us note that in some places in the thesis, we denote the MVL function using the 

notation 𝑓𝑚(𝒙) to better express the number of values 𝑚. 

2.1.3 Integer Function 

The integer function further generalizes the MVL function in a way that the domain of each 

variable and the codomain of the function are allowed to have different cardinalities. The 

definition of the integer function has the following form [10]: 

 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚𝑖 − 1} → {0,1, … , 𝑚 − 1}, (2.4) 

where 𝑚𝑖 for 𝑖 = 1,2, … , 𝑛 and 𝑚, 𝑚𝑖 ∈ ℕ and 𝑚 > 1 and 𝑚𝑖 > 1. To explicitly include the 

domains in the notation, we denote the integer function as 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝒙) in some places. 

Notice that the definition (2.4) is almost identical to the general definition of a discrete 

function (2.1). However, an important difference is that the definition (2.4) specifies that 

elements of the variable domains and codomain are natural numbers starting from 

0 up to 𝑚𝑖 − 1 whereas the general definition (2.1) only specifies that the sets must be finite. 

2.1.4 Pseudo-logic Function 

The flexibility of the definition (2.4) allows for different special cases. Both Boolean 

function and MVL function can be considered as special cases of the integer function. 

Moreover, there exists another special case which is the pseudo-logic function. The 

important property of the pseudo-logic function is that its codomain is identical to the 

codomain of the Boolean function. The pseudo-logic function has the following 

definition [10]: 
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 𝑓(𝒙):×𝑖=1
𝑛 {0,1, … , 𝑚𝑖 − 1} → {0,1}. (2.5) 

We also sometimes refer to it as a Boolean-valued integer function. Boolean-valued integer 

functions usually emerge when we need to identify elements of the domain of the function 

that satisfy some property. For example, let 𝑓(𝒙) be an integer function and let 𝑔(𝒙) =

𝑓(𝒙) > 1. Then 𝑔(𝒙) is a Boolean-valued integer function that evaluates to 1 for 𝒙 at which 

the function 𝑓(𝒙) evaluates to a number greater than 1. 

2.2 Discrete Function Analysis 

The analysis of functions of real and complex variables is an established task in mathematics. 

Over the years, numerous methods that use tools of differential calculus to analyze their 

dynamic properties have been introduced. The literature offers similar tools for the analysis 

of discrete functions as well. Before we proceed with the description of the tools, we need 

to introduce the cofactor of a discrete function. 

2.2.1 Discrete Function Cofactor 

We define the cofactor for the integer function since it is the most general form of the discrete 

function that we consider in the thesis. Let 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) be an integer function. 

Then its cofactor with respect to the variable 𝑥𝑖 and value 𝑎 is: 

 𝑓(𝑎𝑖, 𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛−1, 𝑥𝑛), (2.6) 

where 𝑎 ∈ {0,1, … , 𝑚𝑖 − 1}, 𝑖 ∈ {1,2, … , 𝑛} and 𝑚𝑖 is the size of the domain of the 𝑖th 

variable. The cofactor is a function of 𝑛 − 1 variables, which simplifies the original function 

by setting the value of a variable to a constant 𝑎. 

2.2.2 Logical Differential Calculus 

Logical differential calculus [10], [40] is the mathematical approach that we use to analyze 

the dynamic properties of discrete functions. It offers various tools analogous to traditional 

differential calculus. The relevant tool for this thesis is a logic derivative. The derivative has 

different forms – we start by introducing the simplest ones concerning Boolean functions. 

2.2.2.1 Boolean Derivative 

The Boolean derivative is a basic type of logic derivative and, as the name suggests, we can 

apply it to Boolean functions. To define the derivative with respect to the variable 𝑥𝑖, we use 

the cofactor of Boolean function and logical exclusive disjunction (XOR) Boolean operator: 
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 𝜕𝑓(𝒙)

𝜕𝑥𝑖
= 𝑓(0𝑖, 𝒙) ⊕ 𝑓(1𝑖 , 𝒙). (2.7) 

Alternatively, we can also use a different notation with the same meaning: 

 𝜕𝑓(𝒙)

𝜕𝑥𝑖
= {

1, if 𝑓(0𝑖, 𝒙) ≠ 𝑓(1𝑖, 𝒙)

0, otherwise
. (2.8) 

The derivative defined as (2.7) or (2.8) is a Boolean function of 𝑛 − 1 variables. It describes 

properties of the original function in a way that it evaluates to 1 for elements of the domain 

where the change (either from 0 to 1 or from 1 to 0) of the value of 𝑖th variable causes 

a change of the value of the original function (again either from 0 to 1 or from 1 to 0). 

Since XOR is a symmetrical operation (it does not depend on the order of its 

arguments) the derivative creates pairs of vectors of the domain of the form (0𝑖, 𝒙) =

(𝑥1, 𝑥2, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) and (1𝑖, 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛). If the change 

of the value of 𝑖th variable in the first vector causes a change in the value of the function, 

then the opposite change in the second vector necessarily causes the opposite change in the 

value of the function. A disadvantage of this derivative is that it hides information about how 

(in which direction) the value of the variable changed and in which direction the value of the 

function changed. Therefore, to describe the properties of the function more precisely we 

use directional Boolean derivatives. 

2.2.2.2 Directional Boolean Derivative 

In the general form, we define directional Boolean derivative as [10], [20]: 

 𝜕𝑓(𝑗 → 𝑗)̅

𝜕𝑥𝑖(𝑠 → 𝑠̅)
= {

1, if 𝑓(𝑠𝑖, 𝒙) = 𝑗 and 𝑓(𝑠̅𝑖, 𝒙) = 𝑗̅
0, otherwise

, (2.9) 

where 𝑗, 𝑠 ∈ {0,1}. Derivative (2.9) is a function of 𝑛 − 1 variables that evaluates to 1 for 

the vectors of the form (𝑠𝑖, 𝒙) for which the function evaluates to 𝑗 if it holds that the function 

evaluates to 𝑗 ̅when the value of the 𝑖th variable changes from 𝑠 to 𝑠̅. Definition (2.9) allows 

four specific types of the derivative for four possible combinations of values of 𝑠 and 𝑗. In 

first two cases 𝑠 and 𝑗 have the same value, which means that a change of the value of 𝑖th 

variable results in the same change in the value of the function. This type of directional 

derivative is known as Direct Partial Boolean Derivative (DPBD) and is defined as [10], 

[20]: 

 𝜕𝑓(1 → 0)

𝜕𝑥𝑖(1 → 0)
=

𝜕𝑓(0 → 1)

𝜕𝑥𝑖(0 → 1)
= 𝑓(1𝑖 , 𝒙) ∧ 𝑓(0𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (2.10) 
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where ∧ denotes logical conjunction. Notice that the definition suggests that both derivatives 

are represented by the same function. However, the key difference is in the domain of the 

functions. Unlike Boolean derivative (2.7), which is defined for all elements of the domain 

of the original function, the DPBD is only defined for elements of the form (1𝑖, 𝒙) for 

derivative 𝜕𝑓(1 → 0)/𝜕𝑥𝑖(1 → 0) and for elements of the form (0𝑖, 𝒙) for derivative 

𝜕𝑓(0 → 1)/𝜕𝑥𝑖(0 → 1). Therefore, the derivatives must be computed in the specified points 

to retain their meaning. 

The two other cases include situations when 𝑠 and 𝑗 have opposite values i.e., when 

the change of the value of the 𝑖th variable causes the inverse (hence the name) change in the 

value of the function. This type of direct Boolean derivative is known as Inverse Partial 

Boolean Derivative (IPBD) and is defined as [10]: 

 𝜕𝑓(1 → 0)

𝜕𝑥𝑖(0 → 1)
=

𝜕𝑓(0 → 1)

𝜕𝑥𝑖(1 → 0)
= 𝑓(0𝑖 , 𝒙) ∧ 𝑓(1𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (2.11) 

Just like with DPBDs, both derivatives are represented by the same function. The difference 

is again in the domain where IPBD is only defined for vectors of the form (1𝑖, 𝒙) for 

derivative 𝜕𝑓(0 → 1)/𝜕𝑥𝑖(1 → 0) and for elements of the form (0𝑖, 𝒙) for derivative 

𝜕𝑓(1 → 0)/𝜕𝑥𝑖(0 → 1). Fig. 2.1 shows a summary of the four types of direct Boolean 

derivatives. We can see that each derivative is evaluated only for the elements where 𝑖th 

variable has the value from which we observe its change. 

𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(0 → 1)/𝜕𝑥1(0 → 1) 𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(1 → 0)/𝜕𝑥1(1 → 0) 

𝑓(0,0,0) = 0  0 𝑓(0,0,0) = 0   

𝑓(0,0,1) = 1  0 𝑓(0,0,1) = 1   

𝑓(0,1,0) = 0  1 𝑓(0,1,0) = 0   

𝑓(0,1,1) = 1  0 𝑓(0,1,1) = 1   

𝑓(1,0,0) = 0   𝑓(1,0,0) = 0  0 

𝑓(1,0,1) = 1   𝑓(1,0,1) = 1  0 

𝑓(1,1,0) = 1   𝑓(1,1,0) = 1  1 

𝑓(1,1,1) = 1   𝑓(1,1,1) = 1  0 

𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(0 → 1)/𝜕𝑥1(1 → 0) 𝑓(𝑥1, 𝑥2, 𝑥3) 𝜕𝑓(1 → 0)/𝜕𝑥1(0 → 1) 

𝑓(0,0,0) = 0   𝑓(0,0,0) = 0  0 

𝑓(0,0,1) = 1   𝑓(0,0,1) = 1  0 

𝑓(0,1,0) = 0   𝑓(0,1,0) = 0  0 

𝑓(0,1,1) = 1   𝑓(0,1,1) = 1  0 

𝑓(1,0,0) = 0  0 𝑓(1,0,0) = 0   

𝑓(1,0,1) = 1  0 𝑓(1,0,1) = 1   

𝑓(1,1,0) = 1  0 𝑓(1,1,0) = 1   

𝑓(1,1,1) = 1  0 𝑓(1,1,1) = 1   

      

Fig. 2.1 Four possible types of directional Boolean derivatives of the function 𝑓(𝒙) = 𝑥1𝑥2 ∨ 𝑥3 

depicted using flow diagrams where ~ denotes logical negation and ∧ denotes logical conjunction 
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2.2.2.3 Directional Logic Derivative 

The directional logic derivative is a generalization of the directional Boolean derivative for 

the MVL function. Let 𝑓𝑚(𝒙) be an MVL function. Then we define directional logic 

derivative with respect to variable 𝑥𝑖 as [10]: 

 𝜕𝑓𝑚(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, if 𝑓𝑚(𝑠𝑗 , 𝒙) = 𝑗 and 𝑓𝑚(𝑟𝑗 , 𝒙) = ℎ

0, otherwise
, (2.12) 

where 𝑠, 𝑟, 𝑗, ℎ ∈ {0,1, … , 𝑚 − 1}, 𝑠 ≠ 𝑟 and 𝑗 ≠ ℎ. The derivative is a function of 𝑛 − 1 

𝑚-valued variables, which evaluates to 1 for elements of the domain where 𝑖th variable has 

value 𝑠, the function evaluates to 𝑗 and it holds that if the value of the variable changes from 

𝑠 to 𝑟 the value of the function changes to ℎ. Notice that the derivative is a pseudo-logic 

function that we have described in section 2.1.4. 

Depending on the relations of the values 𝑠, 𝑟 and 𝑗, ℎ we recognize two types of 

directional logic derivatives. The first type is Direct Partial Logic Derivative (DPLD) for 

which it holds that either 𝑠 > 𝑟 and 𝑗 > ℎ or 𝑠 < 𝑟 and 𝑗 < ℎ i.e., a specific increase 

(decrease) of the value of the variable causes a specific increase (decrease) of the value of 

the function. The second type is Inverse Partial Logic Derivative (IPLD) for which it holds 

that either 𝑠 > 𝑟 and 𝑗 < ℎ or 𝑠 < 𝑟 and 𝑗 > ℎ i.e., a specific increase (decrease) of the value 

of the variable causes a specific decrease (increase) of the value of the function. 

Analogously to DPBDs, the following relation holds for directional logic derivatives: 

 𝜕𝑓𝑚(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
=

𝜕𝑓𝑚(ℎ → 𝑗)

𝜕𝑥𝑖(𝑟 → 𝑠)
. (2.13) 

Although derivatives in both directions are represented by the same function the key 

difference is again in the domains since the directional logic derivative is only defined for 

the vectors of the form (𝑠𝑖, 𝒙) and (𝑟𝑖, 𝒙) for DPLD and IPLD respectively. 

We can also use the directional logic derivative to analyze an integer function. We 

define it in an almost identical way just by changing the type of the function [30]: 

 𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

= {
1, if 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(𝑟𝑖, 𝒙) = ℎ

0, otherwise
, 

(2.14) 

where 𝑠, 𝑟 ∈ {0,1, … , 𝑚𝑖}, 𝑠 ≠ 𝑟 𝑎𝑛𝑑 𝑗, ℎ ∈ {0,1, … , 𝑚}, 𝑗 ≠ ℎ. Just like with MVL 

functions, we recognize two types of derivatives, which are DPLD and IPLD. We can see 

that the directional logic derivative (2.14) for the integer function is the most general form 
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that includes directional derivatives of the MVL function and also directional Boolean 

derivatives. Therefore, we will consider just this most general case in the rest of the section. 

Definition (2.12) allows 𝑚2 ∗ (𝑚 − 1)2 specific directional derivatives of MVL 

function for all possible combinations of values of 𝑗, ℎ, 𝑠, 𝑟 and definition (2.14) allows 

𝑚 ∗ (𝑚 − 1) ∗ 𝑚𝑖 ∗ (𝑚𝑖 − 1) specific directional derivatives of integer function. We can 

see that even for smaller values of 𝑚 the number of possible derivatives is considerable. 

However, often we are not interested in the exact influence of a specific change, but we want, 

for example, to know whether a certain change in the value of a variable causes any change 

in the value of the function. Therefore, to obtain a better overall characteristic of the 

examined function we need to use a different type of logic derivative known as integrated 

directional logic derivatives. 

2.2.2.4 Integrated Directional Logic Derivative 

The literature recognizes three types of integrated directional logic derivatives. Each of them 

contains information that is contained in several simple directional logic derivatives. 

2.2.2.4.1 IDPLD of type I 

Integrated logic derivative of type I describes situations when the change of the value of the 

𝑖th variable from 𝑠 to 𝑟 causes a change in the value of the function: 

• from the value 𝑗 to a value less than 𝑗, 

• from a value less than 𝑗 to the value 𝑗, 

• from a value greater than 𝑗 to the value 𝑗, 

• from the value 𝑗 to a value greater than 𝑗. 

The above-enumerated possibilities of a change suggest that the derivative can be defined in 

four configurations [30]: 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) < 𝑗

0, otherwise
, 

(2.15) 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) < 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) = 𝑗

0, otherwise
, 

(2.16) 
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𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↘ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ=𝑗+1

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) > 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) = 𝑗

0, otherwise
, 

(2.17) 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ=𝑗+1

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) = 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑠𝑖, 𝒙) > 𝑗

0, otherwise
, 

(2.18) 

where the symbol ∨ denotes logical disjunction. Notice that we can use the logical 

disjunction since the simple directional derivatives that we operate on are pseudo-logic 

functions. Derivatives (2.15) and (2.16) are defined for 𝑠, 𝑟 ∈ {0,1, 𝑚𝑖 − 1} and 

𝑗 ∈ {1,2, … , 𝑚 − 1} and derivatives (2.17) and (2.18) are defined for 𝑠, 𝑟 ∈ {0,1, 𝑚𝑖 − 1} 

and 𝑗 ∈ {0,1, … , 𝑚 − 2}. And finally, all of them should be computed only for elements of 

the form (𝑠𝑖, 𝒙). In summary the integrated directional logic derivative of type I identifies 

situations when a specific change of a value of a variable causes a change of the function 

from state 𝑗 to a worse (better) state or vice versa. 

2.2.2.4.2 IDPLD of type II 

The integrated logic derivative of type II describes situations when the change of the value 

of the 𝑖th variable from 𝑠 to 𝑟 causes an improvement of the value of the function or in the 

second case a decrement of the value of the function. Therefore, we can define it in two 

configurations [30]: 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

𝑗=1

 

= ⋁ ⋁
𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

𝑚−1

𝑗=1

, 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) >  𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙)

0, otherwise
, 

 

 

(2.19) 
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𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(↗ 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

𝑗=1

 

= ⋁ ⋁
𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛

(ℎ → 𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ=0

𝑚−1

𝑗=1

, 

= 𝑓(𝑥) = {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) <  𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖 , 𝒙)

0, otherwise
. 

(2.20) 

Both versions of the derivative should be computed for elements of the form (𝑠𝑖, 𝒙). In 

summary, the integrated directional logic derivative of type II identifies situations when 

a specific change in the value of a variable causes any improvement (decrement) of the value 

of the function. Notice that we can define the derivative in terms of the derivatives of type I, 

which describe the change more precisely. Also, let us notice that the derivative of type II is 

the only type that does not contain logical and in its definition. 

2.2.2.4.3 IDPLD of type III 

Finally, the integrated logic derivative of type III describes situations when the change of 

the value of the 𝑖th variable from 𝑠 to 𝑟 causes a change in the value of the function in one of 

the following ways: 

• from a value greater than or equal to 𝑗 to a value less than 𝑗, 

• from a value less than 𝑗 to a value greater than or equal to 𝑗, 

• from a value greater than 𝑗 to a value less than or equal to 𝑗, 

• from a value less or equal to 𝑗 to a value greater than 𝑗. 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ𝑢 → ℎ𝑑)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗−1

ℎ𝑑=0

𝑚−1

ℎ𝑢=𝑗

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) ≥ 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) < 𝑗

0, otherwise
, 

(2.21) 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ<𝑗 → ℎ≥𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ𝑑 → ℎ𝑢)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ𝑢=𝑗

𝑗−1

ℎ𝑑=0

 

= {
1, if 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) < 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) ≥ 𝑗

0, otherwise
, 

(2.22) 
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𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ>𝑗 → ℎ≤𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(ℎ𝑢 → ℎ𝑑)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑗

ℎ𝑑=0

𝑚−1

ℎ𝑢=𝑗+1

 

= {
1, 𝑖𝑓 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) > 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) ≤ 𝑗

0, otherwise
, 

(2.23) 

𝜕𝑓𝑚;𝑚1,…,𝑚𝑛
(ℎ≤𝑗 → ℎ>𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= ⋁ ⋁

𝜕𝑓𝑚;𝑚1,𝑚2,…,𝑚𝑛
(ℎ𝑑 → ℎ𝑢)

𝜕𝑥𝑖(𝑠 → 𝑟)

𝑚−1

ℎ𝑢=𝑗+1

𝑗

ℎ𝑑=0

 

= {
1, 𝑖𝑓 𝑓𝑚;𝑚1,…,𝑚𝑛

(𝑠𝑖, 𝒙) ≤ 𝑗 and 𝑓𝑚;𝑚1,…,𝑚𝑛
(𝑟𝑖, 𝒙) > 𝑗

0, otherwise
, 

(2.24) 

where the notation ℎ≤𝑗 denotes all system states that are less or equal to 𝑗 while the meaning 

is analogous for other relational operators. 

2.3 Application of Logic Derivatives 

The importance measures that we described in section 1.6 quantify how a change in 

a component state or reliability influences the state and reliability of the entire system. The 

evaluation of the IMs, therefore, involves analysis of the dynamic properties of the structure 

function. Thus, the logic derivatives constitute a perfect tool for evaluation. In this section, 

we describe how we can use logic derivatives to calculate IMs introduced in section 1.6. 

Definition (1.34) of the SI agrees with the relative number of situations (state vectors) 

in which a failure of a component results in a failure of the system. The definition relates to 

DPBD (2.10), which describes situations in which a change in the value of a variable results 

in the same change in the value of the function. Therefore, we can calculate SI in terms of 

the derivative as [20]: 

 
SI𝑖 = TD (

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
), (2.25) 

where 𝜙 is the structure function and TD(. ) denotes the truth density. The truth density is 

defined as the relative number of elements of the domain of a Boolean-valued function for 

which the function evaluates to 1. Note that the DPBD is a function of 𝑛 − 1 variables, which 

we need to consider in the calculation of the relative number of states. Details of the 

computation of the derivative and the truth density depend on the specific representation of 

the structure function. We describe the details of the computation in section 3.3.2 and 

section 3.3.4. 
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One of the interpretations of the definition of BI is that it agrees with the probability 

that the failure of a component results in the failure of the system. Therefore, we can compute 

BI using the DPBD as [20], [41]: 

 
BI𝑖 = Pr {

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
↔ 1}. (2.26) 

Notice that the evaluation of (2.26) involves the calculation of the same DPBD as in (2.25). 

The difference is in the last step where we calculate probabilities instead of the relative 

number of states. Again, details of the computation of probabilities depend on the specific 

representation of the structure function. 

As we stated in section 1.6, there exist several generalizations of BI for MSS. Logic 

derivatives are also useful for the calculation of various generalizations of BI. For example, 

we can use integrated DPLD (2.21) to compute one of the generalizations of BI for MSS as: 

 
BI𝑖,𝑠

≥ = Pr {
𝜕𝜙(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑠 − 1)
↔ 1}, (2.27) 

where 𝑠 ∈ {1,2, … , 𝑚𝑖 − 1}. The definition and existence of various types of integrated 

DPLD imply that there exist multiple versions of BI for MSS since the choice of the 

derivative gives a slightly different meaning to the results, which allows us to pick one that 

best suits our use case. Also, since the definitions of BI and SI are closely related, for each 

version of BI we can compute the corresponding SI just by altering the last step of the 

calculation from the calculation of probabilities to the calculation of the relative number of 

states. Similarly, we can also calculate the corresponding CI for each version of the BI. 

FVI differs from the IMs discussed so far since its definitions (1.40) and (1.41) are 

based on MCSs. The basic approach to the calculation of FVI involves the enumeration of 

all MCVs (MPVs). Logic derivatives are also a suitable tool for this task since we can use 

an extension of the derivative as described in [42]. However, the enumeration of all MCVs 

(MPVs) is not an efficient solution, especially for systems with a large number of 

components since the number of MCVs (MPVs) is also very large. Fortunately, a more 

sophisticated approach exists [43], [44] that also utilizes the extension of the derivative and 

can calculate FVI without the enumeration of MCVs (MPVs). 

The definitions that we presented in this section show that the logic derivatives are 

indeed a perfect tool for the importance analysis because of the relative simplicity of the 

definitions and also because we can use one derivative to compute multiple IMs. 
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2.4 Discrete Function Representation 

One of the characteristics of complex systems is that they consist of many components. 

Therefore, the structure function representing such a system may be difficult to represent. 

Hence a principal task that must precede the reliability analysis itself is the choice of 

a suitable representation for the function. The literature provides various representations 

some of which are suitable for the representation of any discrete function while others are 

specialized to represent a specific type of discrete function e.g. Boolean function. This 

section introduces some of the representations that we can apply in reliability analysis. 

2.4.1 Arithmetic Expression 

The arithmetic expression is one of the simplest representations. We mostly encounter it in 

the literature since it is easily readable to humans.  The expression consists of variables and 

mathematical operators. We denote variables as 𝑥𝑖 where 𝑖 specifies the index of the variable. 

The type of mathematical operators depends on the type of function the expression 

represents. For Boolean functions, the commonly used operators are logical conjunction 

denoted as ∧ (often omitted from the expression), logical disjunction denoted as ∨ , and 

logical negation denoted as   ̅ over an expression. For the MVL functions and integer 

functions commonly used operators are the min and max operators, which return the 

minimum and maximum of their arguments respectively.  

 

Fig. 2.2 Abstract Syntax Tree representing function 𝑓(𝒙) = max(𝑥1, min(𝑥2, 𝑥3)) 

The main disadvantage of arithmetic expressions is that, although they are easily readable to 

humans, they are harder to process for a computer. One of the ways to manipulate arithmetic 

expressions on the computer is to represent them using an Abstract Syntax Tree (AST). AST 

is a graph structure that consists of nodes representing variables and nodes representing 

mathematical operators. Fig. 2.2 shows an example of an AST. Though it is easy to evaluate 

the AST and perform basic arithmetic operations, it is quite complicated to perform more 

complicated calculations such as the calculation of logic derivatives. 
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2.4.2 Truth Table 

Another very simple discrete function representation is the truth table. The table explicitly 

assigns the value of the function to each element of the domain of the function. This implies 

that the size of the table is the same as the size of the domain of the function. Tab. 2.1 shows 

formulae for the calculation of the size of the table for different discrete function types. For 

each type, the size depends exponentially on the number of variables 𝑛. This property is 

impractical even for smaller functions of roughly tens of variables. However, thanks to its 

simplicity, the table is often used in examples and for testing since we can simply (but costly) 

implement even more complicated calculations such as the logic derivatives. 

Tab. 2.2 shows a truth table of an integer function. Besides the straightforward form 

of the table as shown in Tab. 2.2, there exist techniques that make the table more compact 

[9].  One of the techniques is to enumerate only elements of the domain in which the function 

evaluates to a certain value assuming that the function evaluates to the same known value in 

all other elements. For example, in the case of a Boolean function, we only need to 

enumerate elements of the domain where the function evaluates to 1 and assume that the 

function evaluates to 0 in other points. In general, for a function that has a codomain of size 

𝑚, we need to enumerate 𝑚 − 1 subsets of the truth table. 

Tab. 2.1 Size of the domains of different function types where n is the number of variables, m is the 

number of values of the MVL function and 𝑚𝑖 is size of the domain of 𝑖th variable of the integer 

function 

Function type Size of the domain 

Boolean 2𝑛 

Multiple-Valued Logic 𝑚𝑛 

Integer 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑛 

 Tab. 2.2 Truth table of the integer function 𝑓(𝒙) = max(min(𝑥2, 𝑥3), 𝑥1) where 𝑥1, 𝑥2 ∈ {0,1} 

and 𝑥3 ∈ {0,1,2} 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇 

0 0 0 0 1 0 0 0 

0 0 1 1 1 0 1 1 

0 0 2 2 1 0 2 2 

0 1 0 0 1 1 0 1 

0 1 1 1 1 1 1 1 

0 1 2 2 1 1 2 2 
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2.4.3 Truth Vector 

A truth table like the one shown in Tab. 2.2 has a regular structure. We can use this property 

to make the table more efficient by storing only the last column of the table. We call the 

column a truth vector. An important property of the vector is that we can access its elements 

using an index 𝑙. Therefore, we need to map the elements of the domain of the function to 

the index 𝑙. For an integer function the index can be calculated as follows: 

 
𝑙 = ∑ 𝑜𝑖𝑥𝑖

𝑛

𝑖=1

 where 

𝑜𝑛 = 1 

𝑜𝑖 = 𝑚𝑖+1𝑜𝑖+1 for 𝑖 = 1,2, … , 𝑛 − 1. 

(2.28) 

The auxiliary vector 𝑜𝑖 is called an information vector. It is beneficial to calculate the 

information vector only once before any further calculations. Furthermore, in the case of the 

MVL function and Boolean function, the calculation of the information vector simplifies 

since the formula (2.28) simplifies to (2.29) and (2.30) respectively. 

 
l = ∑ 𝑚𝑛−𝑖𝑥𝑖

𝑛

𝑖=1

, (2.29) 

 
l = ∑ 2𝑛−𝑖𝑥𝑖

𝑛

𝑖=1

. (2.30) 

The size of the vector is equal to the number of elements of the domain of the function. 

Fortunately, we can utilize the way computers store numbers to make vectors more compact. 

The smallest addressable unit of memory is a byte that can encode 256 unique values. 

However, the sizes of domains of integer variables are usually much smaller, and in the case 

of Boolean variables it is just two values i.e., we can encode it using a single bit. Therefore, 

we can store the truth vector more efficiently if we encode multiple elements of the domain 

using a single byte. Let 𝑝 be the maximum of the sizes of domains of variables of an integer 

function and let 𝑛 be the number of variables. Then one byte can store 𝑟 = ⌊log2 𝑝⌋ elements 

of the domain and therefore the size of the truth vector is reduced by the factor of  𝑟. Though 

this optimization is useful, especially for Boolean functions, it does not help with the 

eventual exponential complexity. For example, the memory requirements of a truth vector 

representing a Boolean function of 40 variables using the described optimization are 

128 GiB of memory. The truth vector becomes large even for dozens of variables. 

Nonetheless, the truth vector is useful for testing as a representation of the truth table. 
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2.4.4 Decision Tree 

An important property of the truth table is that we can look up the value of the function 

corresponding to a given element of the domain. The truth vector allows the lookup using 

a simple computation. Another useful technique is to use a so-called Decision Tree (DT). 

The decision tree is a specific type of graph that satisfies the tree invariants [45]. A special 

kind of DT is a Binary Decision Tree (BDT) that represents a Boolean function. We can use 

the decision tree to look up the value of a function using a series of decisions. 

A decision tree (Fig. 2.3) consists of two types of nodes.  The first type is internal 

nodes that represent variables and the second type is terminal nodes that represent values 

from the domain of the function. Each internal node is associated with one variable 𝑥𝑖 and 

has a tuple of 𝑚𝑖 outgoing edges. The 𝑘th edge in the tuple represents a situation in which 

the variable 𝑥𝑖 has the value 𝑘. To look up a value of the function we start at the root of the 

tree. In each internal node, we choose an edge depending on the value of the variable. Using 

the edge, we move to the next node. We repeat this process until we reach a terminal node. 

In Fig. 2.3 the bold edges represent the path in the tree for values of variables 𝑥1 = 1, 𝑥2 =

0, 𝑥3 = 2, which we can shortly denote using the vector notation (1,0,2). 

The decision tree is that it is ordered – each level of the decision tree either contains 

internal nodes associated with the same variable or contains only terminal nodes (last level). 

It follows that the size of the tree is exponential in the number of variables 𝑛 and therefore 

the tree is impractical for the representation of bigger functions – just like the truth table. 

The graph approach is a basis for a more sophisticated data structure – the decision diagram. 

 

Fig. 2.3 Decision tree representing the integer function defined in Tab. 2.2  
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2.4.5 Decision Diagram 

The decision diagram builds on the idea of the decision tree – to represent a discrete function 

using a graph structure. It enhances the graph structure (which no longer is a tree) to allow 

for a more compact representation of a discrete function. Like the decision tree, a decision 

diagram consists of internal and terminal nodes serving the same purpose as in the decision 

tree. The nodes may or may not be ordered depending on a specific type of decision diagram. 

Fig. 2.4 shows an example of a decision diagram representing the same function as DT in 

Fig. 2.3. 

 

Fig. 2.4 Decision diagram representing the same function as DT in Fig. 2.3 

Decision diagrams are the central topic of this thesis, thus, the rest of the chapters provide 

an in-depth description of the fundamental properties of decision diagrams and their 

application in reliability analysis. 
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3 Decision Diagrams 

A decision diagram is a graph structure that can efficiently represent discrete functions. 

Researchers have proposed various types of decision diagrams over time. Some of the 

diagrams are intended for general discrete function manipulation whilst others aim to solve 

a specific problem. This chapter introduces several types of decision diagrams along with 

their key properties and algorithms for their creation and manipulation. Finally, the chapter 

describes the application of decision diagrams in reliability analysis as well as diagram 

algorithms specific to reliability analysis. 

3.1 Reduced Ordered Decision Diagrams 

The Binary Decision Diagram (BDD) proposed by Lee [46] and further developed by 

Akers [47] and Bryant [11] as Reduced Ordered Binary Decision Diagram (ROBDD) is, 

historically, the first decision diagram. The literature often refers to ROBDD as just a Binary 

Decision Diagram (BDD) since this version is the most widely used. In this thesis, we will 

also use the term BDD instead of ROBDD for brevity. BDD is a graph structure designed 

for the representation of Boolean functions However, theoretical principles and techniques 

used in its definition are the basis for most of the other diagrams described in this chapter. 

As we described in Section 2.1 the Boolean function (2.2) is a special type of discrete 

function (2.1). Therefore, it is natural that techniques and approaches utilized in its 

representation in the form of the BDD were considered and used in the development of 

similar techniques for the representation of other types of discrete functions – namely the 

MVL function (2.3) and integer function (2.4). The authors proposed the Reduced Ordered 

Multi-valued Decision Diagram (ROMDD) [12] as a generalization of the (RO)BDD to 

represent these functions. Like (RO)BDD, the literature often refers to ROMDD shortly as 

MDD. We will also use this notation in this thesis. 

Though historically, decision diagrams have been developed from simpler BDD to 

more general MDD and others, we will proceed with the description of MDD in its most 

general form which represents an integer function. This approach is more concise since BDD 

and MDD representing MVL function are only a special case and, hence, do not require 

separate descriptions. In Fig. 3.1 we can see all three diagram types mentioned – BDD as 

the simplest type and two versions of MDD, the first one representing an MVL function and 

the second one representing an integer function. 



UNIVERSITY OF ZILINA 

46 

 

   

Fig. 3.1 Left: BDD representing Boolean function, middle: MDD representing MVL function, 

right: MDD representing integer function 

3.1.1 Graph Structure 

MDD is a graph structure that consists of terminal nodes that represent values of the function 

and internal nodes that represent variables. A terminal node is identified by the value it 

represents. Let us denote nodes using capital letters 𝐴, 𝐵, … . Then, we denote the value of 

a terminal node 𝐴 as VALUE(𝐴). Also, we use the notation 𝑇𝑎 to denote a terminal node 

representing value 𝑎. In Fig. 3.1 and all other figures, we denote terminal nodes using 

a square shape with a number representing the value. An internal node is associated with 

a variable 𝑥𝑖 and a tuple of 𝑚𝑖 edges leading to other nodes – sons1 of the node. The edges 

represent possible values of the variable – 𝑘th edge represents value 𝑘 for 𝑘 = 0,1, … , 𝑚𝑖 −

1. Let 𝐵 be an internal node. Then, we denote the index 𝑖 of the variable it is associated with 

as INDEX(𝐵) or shortly as 𝑖𝐵 and its 𝑘th son as SON(𝐵, 𝑘) or shortly as 𝐵𝑘. 

One of the principal operations that we can perform on MDD is to evaluate it for 

some specific input vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛). During the evaluation, we repeat a decision 

in each internal node (starting at the root node) such that we choose an edge according to the 

value of 𝑥𝑖. The edge leads to another node, which is either an internal node – in which case 

we repeat the process, or it is a terminal node that contains the value of the function 

corresponding to 𝒙. An alternating sequence of internal nodes and edges that lead to 

a terminal node is known as a path [48]. 

 

 

 

1 The term son or direct successor is typically used with tree structures. However, it is short, 

descriptive and conveys the intended information very well also in the case of decision diagrams. 
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Fig. 3.2 MDD containing redundant node (dashed gray outline) and two duplicate nodes (thick 

black outline) 

Nodes of an MDD are ordered on levels. The last level contains terminal nodes. Other levels 

contain internal nodes and all internal nodes on the same level are associated with the same 

variable. We denote the level of node 𝐴 as LEVEL(𝐴). The first level contains a single node 

– the root node – denoted as 𝑟𝑜𝑜𝑡. Consequently, using this notation, we may write the 

following relations LEVEL(𝑟𝑜𝑜𝑡) = 1 and LEVEL(𝑇𝑎) = 𝑛 + 1 for 𝑎 = {0,1, … , 𝑚 − 1}. 

Edges in MDD can only lead to nodes on lower levels. This rule ensures that nodes 

are in the same order on each path from the root node to a terminal node. This property is 

captured in the Reduced Ordered MDD part of the full name. Consequently, the order of 

variables is one of the properties that we can describe for each ordered MDD. In Fig. 3.1 

(and in most of the other figures depicting diagrams) we use the so-called implicit order, 

which orders variables by their indices i.e., 𝑥1 on the first level, 𝑥2 on the second level all 

the way to the 𝑥𝑛 on the second to last level i.e., it holds that INDEX(𝐴) = LEVEL(𝐴). 

Another important property of MDD is that it does not contain any redundant nodes 

and no duplicate nodes. The two properties ensure that each node in the diagram is unique. 

A redundant node is a node with all edges leading to the same node. Decisions in such a node 

will always result in the selection of the same son (e.g. during the evaluation). Therefore, 

there is no need to keep such a node in the diagram. In Fig. 3.2 we can see an example of 

a redundant node (representing variable 𝑥2) marked with a dashed gray outline. Two nodes 

are duplicates if they are roots of two isomorphic subgraphs. Therefore, only one node from 

the group of duplicate nodes is always retained. This property is captured in the Reduced 

Ordered MDD part of the full name. More examples of redundant and duplicate nodes can 

be found in section 3.2.2. 
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3.1.2 Mathematical Foundations 

The mathematical foundation of decision diagrams lies in a recursive application of 

Shannon’s expansion [49] (for BDD) and generalized Shannon’s expansion [9] (for MDD). 

The definition of Shannon’s expansion uses the cofactor of a discrete function (2.6). The 

Shannon’s expansion with respect to variable 𝑥𝑖 is defined in terms of the cofactor as: 

 𝑓(𝒙) = 𝑥𝑖𝑓(1𝑖, 𝒙) ∨ 𝑥𝑖̅𝑓(0𝑖, 𝒙), (3.1) 

for the Boolean function and the generalized version for an integer function is defined as: 

 

𝑓(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ 𝑓(𝑘𝑖, 𝒙))

𝑚𝑖−1

𝑘=0

, (3.2) 

where 𝑖 ∈ {1,2, … , 𝑛}, 𝑘 ∈ {0,1, … , 𝑚𝑖 − 1} and ↔ represents the logical 

biconditional (1.10). The expansion (3.1) splits the function into two cofactors of the 

function –  𝑓(1𝑖, 𝒙) and 𝑓(0𝑖, 𝒙). The disjunction of two conjunctions selects exactly one of 

the cofactors based on the value of the variable 𝑥𝑖. The selection or more suitably – 

the decision, is neatly represented by an internal node, which can be considered a graph 

representation of Shannon’s expansion with respect to variable 𝑥𝑖. The generalized 

Shannon’s expansion (3.2) follows the same rationale by selecting exactly one of the 𝑚𝑖 

cofactors of the function with respect to variable 𝑥𝑖. The decision is achieved by the logical 

biconditional {𝑥𝑖 ↔ 𝑘} evaluating to 1 for exactly one value of 𝑘 and to 0 for all other values. 

The multiplication then selects only one of the cofactors. Fig. 3.3 illustrates the relationship 

between the expansions (3.1) and (3.2) and an internal node of a decision diagram. 

Fig. 3.3 shows that each node except the root node on a certain level of the diagram 

represents a cofactor of some function from the above levels. The expansion (3.2) effectively 

splits the domain of the function into 𝑚𝑖 parts of the form (𝑎𝑖, 𝒙) for 𝑎 = 0,1, … , 𝑚𝑖 − 1. In 

each part, the value of the variable 𝑥𝑖 is known and the number of variables is reduced by 

one. Therefore, the cofactors (son nodes) are either constant functions (terminal nodes) or 

they are internal nodes representing another recursive expansion. The recursion is 

guaranteed to terminate after at most 𝑛 expansions since values of all variables are 

necessarily known at that point. This sets the upper bound on the number of levels of 

a reduced ordered decision diagram, which is 𝑛. However, the cofactor can turn to a constant 

function sooner when it evaluates to the same value for all elements of its domain. This 

agrees with the situation when an edge in a diagram skips some levels and goes directly to 

a terminal node. 
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Fig. 3.3 Internal node of a BDD (left) and MDD (right) that represents Shannon’s expansion with 

respect to 𝑖th variable 

Lastly, Fig. 3.3 shows an important property of the decision diagrams that not only the root, 

but each node represents a discrete function (even a terminal node, which represents 

a constant function). Therefore, when suitable, we can use the term function and node 

interchangeably. 

3.1.3 Canonical Representation 

The reduced and ordered properties of MDD ensured that MDD is a canonical 

representation of a discrete function. This was proven by Bryant [11] for BDD and later by 

the authors in [12] for MDD. Canonical representation ensures that each function has 

a unique representation. An example of a representation that is not canonical is an arbitrary 

expression. For instance, Boolean functions 𝑓1 and 𝑓2 defined by expressions 𝑓1(𝒙) = 𝑥1𝑥2 ∨

𝑥2𝑥3 and 𝑓(𝒙) = 𝑥1̅̅̅𝑥2𝑥3 ∨ 𝑥1𝑥2𝑥3̅̅ ̅ ∨ 𝑥1𝑥2𝑥3 represent the same function even though they 

contain different numbers of terms and different operators. In general, to check whether two 

non-canonical representations of discrete functions represent the same function, we 

transform each representation into some other – canonical – representation and compare 

them for equality.  

In the case of MDDs, we need to define the equality of two nodes to be able to 

compare two diagrams. The first condition for nodes 𝐴 and 𝐵 to be equal is that they must 

both be either terminal nodes or internal nodes. If they are terminal, they are equal if and 

only if VALUE(𝐴) = VALUE(𝐵). If they are internal, they are equal if and only if INDEX(𝐴) =

INDEX(𝐵) and 𝐴𝑘 = 𝐵𝑘 for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1. Notice the recursive nature of equality 

comparison, which shows that each node can be considered as a root of (sub)diagram on its 

own i.e., each node (not only the root node but even terminal nodes) represents a unique 

function. Implementation of the comparison using the definition would be relatively 

complicated since it would require simultaneous traversal of both diagrams. Hence, in 

section 3.2.1 we describe an efficient approach that is used in practice. 
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Another typical example of a canonical representation is the truth table which. As we 

described in section 2.4.2 and section 2.4.3, the truth table is quite inefficient for the 

representation of larger functions. However, it is useful for testing and verification because 

of its simplicity. Lastly, let us note that even though expressions, in general, are not canonical 

representations, some expressions with certain restrictions such as Disjunctive Normal 

Form [8] are canonical representations. 

3.1.4 Number of Internal Nodes 

One of the key properties of each discrete function representation is its size, specifically, the 

relation of the size to the number of variables 𝑛. The reason is the practical limitation posed 

by the limited amount of memory and complexity of the algorithms that work with the 

representation, which usually depends on the size. When we described other discrete 

function representations such as the truth table or the decision tree, we also provided 

a formula to calculate the size of the representation for a given number of variables 𝑛 (see 

Tab. 2.1, and section 2.4.4). Unfortunately, it is not possible to do the same calculation for 

decision diagrams in general. Nevertheless, we can calculate the worst possible size of 

a diagram. Consider MDD representing 𝑚-valued logic function of 𝑛 variables. Then we can 

calculate the upper bound on the number of nodes as [50]: 

 
min

ℎ
(

𝑚𝑛−ℎ − 1

𝑚 − 1
+ 𝑚𝑚ℎ

− 𝑚), (3.3) 

where 0 ≤ ℎ ≤ 𝑛. To get a better insight into the reasoning behind the expression we need 

to follow constraints of the structure of a decision diagram [51]. There is only one node on 

the first level of the diagram. At the second level, there can be at most 𝑚 nodes (sons of the 

root node). For the next levels, the number of possible unique nodes grows exponentially 

following the branching of a decision tree. However, at the same time, there can be at most 

𝑚 terminal nodes at the last level of the diagram. Since each node in the diagram is unique 

and edges can only lead to nodes at lower levels the number of nodes at the second to last 

level (last internal level) is also limited. We can see that the size of the diagram grows 

exponentially from the top and combinatorically from the bottom. The increasing sequences 

“meet” at some internal level given by ℎ, which minimizes the expression (3.3). Therefore, 

the first term of the addition accounts for the exponential growth of the diagram from top to 

bottom, and the second term accounts for the combinatorial growth from the bottom of the 

diagram. 
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Tab. 3.1 Number of nodes in BDDs representing specific (symmetric) functions 

Function Number of internal nodes 

Logical conjunction/disjunction 𝑛 

Odd parity function 2𝑛 − 1 

Structure function of a 𝑘-out-of-𝑛 system 𝑘(𝑛 − 𝑘 + 1) 

 

The exponential upper bound on the number of nodes does not seem to improve the 

exponential complexity of the decision tree and the truth table. However, for many functions 

that we encounter in practice, the size of the diagram is much more favorable. A typical 

example is the representation of symmetric functions that we briefly describe in 

section 3.1.5. In Tab. 3.1 we can see formulas to calculate the number of internal nodes in 

BDDs representing such functions (the number of terminal nodes is always two, except in 

the special case of a constant function). Notice that the numbers are much better than 

exponential. Also, the size of the diagram is closely tied to the order of variables, which we 

discuss in section 3.1.5. 

3.1.5 Order of Variables 

The order of variables in a decision diagram is one of the properties required for it to be 

a canonical representation. A well-known consequence of this property is that it might 

influence the size – the number of nodes – of the diagram [11]. We can classify diagrams 

into two groups. The first group contains diagrams whose size does not depend on the order 

of variables and, naturally, the second – larger group – contains diagrams whose size 

depends on the order of variables. 

Diagrams in the first group represent symmetric functions – functions that evaluate 

to the same value regardless of the order of their arguments. Diagrams representing such 

functions have a regular structure that does not change for different orders of variables. 

Typical examples of such functions are the Boolean parity function, logical conjunction of 

𝑛 variables, logical disjunction of 𝑛 variables, min function, max function, etc. Fig. 3.4 

shows BDDs representing the Boolean parity function of three variables. BDDs in the figure 

have different orders of variables and they have the same regular ladder-like structure. 
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Fig. 3.4 BDDs with three different orders of variables representing parity function  

The second group of diagrams is more important since we encounter them more often and 

therefore are important to consider in the design of software tools for the creation and 

manipulation of decision diagrams. The order of variables can be a factor that decides 

whether we can construct a diagram within reasonable time and memory constraints. For 

example, Fig. 3.5 shows BDDs representing Boolean function 𝑓(𝒙) = 𝑥1𝑥2 ∨ 𝑥3𝑥4 ∨ 𝑥5𝑥6 

with two different orders of variables. Notice that even for such a simple function the number 

of nodes grows significantly. Therefore, it is vital to use a suitable order of variables. 

Unfortunately, finding an optimal order is an NP-complete problem [52]. Hence, in practice, 

we are reliant on the use of a variety of heuristic approaches. 

The literature describes two principal types of heuristics for the choice of the order 

of variables [53], [54], [55]. The first type is static heuristics. Their key property is that they 

choose the order of variables before the creation of any diagrams. Then, during and after the 

creation the order stays the same. The advantage of the static approach is that it can exploit 

the properties of the specific problem and therefore find a better order for that specific 

problem. On the other hand, it might not be possible to use the approach for generic diagram 

manipulation tools. 

The main idea behind the heuristics of the second type is to gradually re-order 

variables as the diagrams are created, hence, those heuristics are called dynamic heuristics. 

Since they are opposite to the static ones their advantage is that they do not need any 

knowledge about the function(s) the diagram(s) represent. This allows them to be used in 

generic decision diagram manipulation tools. Presumably, the most well-known dynamic 

heuristic is variable sifting [55] originally proposed for BDDs. 
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Fig. 3.5 BDDs representing the same function using a different order of variables 

A vital operation for each dynamic heuristic is a swap of indices between two adjacent levels 

in a diagram so it can gradually adjust the order of variables using a series of swaps. The 

swap operation needs to maintain all invariants of the diagram – mainly that each node 

represents a unique function, and the function the node represents does not change during 

the lifetime of the node. The implementation of the swap operation is based on the 

observation that to swap nodes that represent variable 𝑥𝑖1
 with nodes that represent variable 

𝑥𝑖2
 on the next level, we only need to examine nodes at two levels and modify nodes 

representing variable 𝑥𝑖1
 [56], [57]. 

To swap a node we modify it by changing its index from 𝑖1 to 𝑖2 and set its sons to 

new nodes with index 𝑖1 and sons that were grandsons of the original node in such a way, 

that the function is preserved at the node. Fig. 3.6 shows the swap operation for a specific 

example. Bold darker edges show part of a path in the diagram. The important thing to notice 

is that the path (and all other paths) leads to the same grandson after the swap. After the 

swap, the old sons of the node can be freed (if they are not shared by some other nodes in 
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the diagram), also the newly created nodes might be redundant, so they are not created. This 

is the point where a series of swaps can result in a new diagram that contains fewer nodes.  

An interesting observation is that the swap operation practically mutates the state of 

the node by changing pointers to its sons and its index, however, logically the node 

represents the same function and therefore it does not violate the immutability invariant. 

The variable sifting heuristic described in [55] uses a series of swaps to find a better 

order of variables. It places each variable on a level where the total number of nodes in the 

diagram is the smallest. It does so by first trying to place a variable (by swapping all nodes 

associated with a given variable) on each level of the diagram and subsequently restoring 

the best-observed case. The order in which variables are placed is given by the total number 

of nodes initially associated with the given variable starting with the variable with the highest 

number of nodes. 

Although heuristics can help a lot in the practice there exist some functions for which 

the number of nodes in the diagram will depend exponentially on the number of variables 

regardless of the order of variables. We call such functions inherently complex 

functions [11]. An example of an inherently complex function is a Boolean function 

describing an integer multiplier [11]. 

 

 

Fig. 3.6 Node of an MDD before (top) and after (bottom) the swap 
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3.1.6 BDD Extensions and Alternatives 

Since its introduction, BDD has proven to be a fundamental tool for solving problems in 

areas such as logic synthesis [58] or formal verification [59]. The reason for its popularity 

among researchers is that it can represent Boolean functions efficiently and is supported by 

various software libraries (see section 3.2). 

Naturally, a general tool – despite being reasonably efficient – cannot exploit the 

specifics of a given problem. Therefore, the researchers have proposed various modified 

versions of the BDD structure that are designed to solve a narrower set of problems. BDD 

with complemented edges [60], [61] simplifies the representation of complemented Boolean 

functions. Zero-suppressed Decision Diagram (ZDD) [62] improves diagram sizes for 

Boolean functions representing sets (especially sparse sets). Algebraic Decision Diagram 

(ADD) [63] allows more terminal nodes than just two nodes representing values 0 and 1. 

And Edge-Valued Binary Decision Diagram (EVBDD) [64] also allows more terminal nodes 

than just two nodes representing values 0 and 1. 

In addition to the above-named BDD extensions, researchers have proposed several 

other modifications – using various forms of binary encoding of multi-state variables and 

functions – such as logarithmic BDDs (LBDD) [65], Multi-State BDDs (MBDD) [66], or 

Multi-Rooted Binary Decision Diagrams [67]. Finally, in Fig. 3.7, we can see examples of 

selected BDD extensions.  

   

Fig. 3.7 BDD with complemented edges representing the function 𝑓1(𝒙) = 𝑥1 ∨ 𝑥2̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅ (left); ADD 

representing function 𝑓2(𝒙) = max(15𝑥1, 10𝑥2) (middle); EVBDD representing function 𝑓3(𝒙) =
3𝑥1 + 2𝑥2 − 9𝑥3 (right) 
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3.2 Decision Diagram Implementation 

Researchers have developed several software libraries implementing decision diagrams in 

different programming languages. The libraries are often referred to as decision diagram 

packages. The most well-known are the BuDDy [68] and CUDD [69] written in C language 

with an interface for C++ and the more recent Sylvan [70] parallel BDD package written in 

C language. Several programming languages offer libraries that serve as interfaces to call 

these libraries such as CUDD for Haskell [71] or dd for Python [72]. Furthermore, several 

implementations in other programming languages exist, such as the JDD [73] library for Java 

and the DecisionDiagrams library [74] for C#. Tab. 3.2 contains an overview of the libraries. 

As we can see in the table, most implementations support only BDDs and some of 

their alternatives. We aim to examine and develop techniques for the analysis of MSS using 

MDDs – the examination requires a performant software library supporting MDDs. Since 

none of the state-of-the-art C libraries support MDDs, we implemented our open-source 

decision diagram library called TeDDy  – Templated Decision Diagram library [75], [76] in 

the C++ language. The goal of the library is to provide general tools for the creation and 

manipulation of BDDs and MDDs with a module dedicated to reliability analysis that utilizes 

decision diagrams. 

Tab. 3.2 Overview of selected decision diagram packages 

Package Language Supported diagrams 

BuDDy C, C++ BDD 

CUDD C, C++ ADD, BDD, ZDD 

Sylvan C, C++ ADD, BDD, ZDD 

CUDD (Haskell) Haskell ADD, BDD, ZDD 

dd Python BDD, MDD 

JDD Java BDD, ZDD 

DecisionDiagrams C# BDD 

 

As the name suggests, the library uses the powerful template mechanism of the C++ 

language to implement core functionalities universally using object-oriented programming 

while maintaining runtime performance comparable to state-of-the-art C libraries. 

Implementation of the library uses the following layers: 

• node representation, 
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• node management, 

• diagram management, 

• and user-facing interface. 

The four-level design of the library can be seen in Fig. 3.8. It allows higher levels to reuse 

the core low-level parts of the library – e.g. the management of nodes. 

Section 3.1 covers the theoretical aspects of reduced ordered decision diagrams – 

describing their characteristic properties and mathematical foundation. However, a diagram 

implementation that would just blindly follow the above definitions would not be effective. 

Therefore, in the rest of this section, we focus on important aspects of the implementation 

of software tools for the creation and manipulation of decision diagrams – focusing on the 

implementation of MDDs representing integer functions. A complete implementation of 

a decision diagram package needs to address the following problems: 

• representation of graph nodes; 

• management of graph nodes – node sharing; 

• diagram creation – static, dynamic, and direct approaches; 

• diagram transformations; 

• examination of diagram properties – efficient diagram traversals and 

memoization techniques. 

Our software library TeDDy implements all the above-mentioned techniques with a focus 

on performance and extensibility to allow the implementation of reliability analysis 

algorithms on top of the decision diagrams. 

In the following chapters and sections of this thesis, we utilize pseudocodes to better 

illustrate algorithms and their properties. Some of the pseudocodes describe existing 

algorithms while others describe new algorithms, which are contributions of this thesis. 

Therefore, to differentiate between the two cases, the existing algorithms are enclosed in 

appendix A, while novel algorithms are presented directly in the main sections. Finally, 

considering the implementation aspects, the pseudocodes assume, for simplicity, that the 

diagrams use the default order of variables i.e., that for an internal node 𝐴 it holds that 

INDEX(𝐴) = LEVEL(𝐴). 
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Fig. 3.8 UML class diagram showing the most important classes on four layers of the TeDDy 

library 

3.2.1 Node Sharing 

The sharing of isomorphic subgraphs within a single diagram is one of its essential 

properties. It greatly contributes to the efficiency of the structure and is also one of the 

reasons that the diagram is a canonical representation of a function. 

Each node in the diagram is unique and thus represents a unique function. The 

function represented by a node does not change during the lifetime of the node. The diagram 

as a data structure can therefore be regarded as a persistent data structure. However, let us 

recall that the actual bytes representing a node may change e.g., during a swap of variables 

(section 3.1.5) but the logical meaning of the node (the function it represents) stays the same. 

This invariant property allows for more optimizations that we describe further in this section. 
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Fig. 3.9 Three MDDs represent integer functions each containing node representing the same 

function 

Further improvement of the diagram structure lies in the development of the idea of node 

sharing beyond a single diagram. The reason for this is that a node representing a certain 

function usually appears in multiple diagrams created separately and thanks to immutability 

we are certain that it will always represent the same function. For example, in Fig. 3.9 we 

can see that the node marked with the bold outline, representing function 𝑓(𝒙) = 𝑥3, is part 

of all three diagrams. Since this is true for other nodes as well, the potential for improvement 

of the diagram structure is considerable. Instead of maintaining each node unique within 

a single diagram, we manage a graph in which unique nodes are shared across multiple 

diagrams. Such a graph has multiple roots (nodes that do not have any incoming edges), 

therefore, it is sometimes referred to as a multi-rooted directed acyclic graph in the literature. 

Diagrams represented using this technique are called Shared Decision Diagrams – first 

proposed for BDDs [77] and later generalized for MDDs [78]. Fig. 3.10 shows the same 

diagrams as Fig. 3.9 but represented as shared diagrams – using a single graph. Notice that 

the above-mentioned node representing function 𝑓(𝒙) = 𝑥3 is present only once. 
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Fig. 3.10 Decision diagrams from Fig. 3.9 are represented with a single multi-rooted graph 

To maintain the uniqueness of internal nodes, we use a lookup table called unique table. The 

key for this table is a pair (𝑖, (𝐴0, 𝐴1, … , 𝐴𝑚𝑖
)) and the value stored in the table is a pointer 

to the node 𝐴. For the terminal nodes, we use a similar table in which the key is the value 

represented by the terminal node. Such tables are an essential component of every decision 

diagram library. It is crucial to avoid the direct creation of new nodes. Instead, it is necessary 

to use dedicated factory functions that work with the unique tables. In the following 

description, we will refer to the functions as CREATETERMINALNODE (Alg. A.1) and 

CREATEINTERNALNODE (Alg. A.2). If we exclusively use the functions to obtain new nodes, 

it cannot happen that two isomorphic subgraphs exist in the graph. Let us notice that this 

approach is an implementation of the Flyweight design pattern [79]. 

Section 3.1.3 described MDD as a canonical representation. Such property is closely 

tied with a comparison for equality. Comparison following the definition described in 

section 3.1.3 involves traversing both diagrams simultaneously and comparing their 

structure in the process. Computational complexity of such a process is O(𝓈) where 𝓈 is the 

number of nodes in the smaller diagram – in the worst case, we traverse the entire smaller 

diagram and find out that diagrams are equal/not equal in the last traversed node. 

A representation that requires such exhaustive comparison is known as a weak canonical 

form [61]. If nodes are not shared between different diagrams, then diagrams representing 

the same function may lie in a different location in the memory. Therefore, we need to 

exhaustively compare their structure to check whether they are the same. However, in 

a graph of shared diagrams that only contains unique nodes, it is sufficient to compare only 

the pointers (identities) of the root nodes since the same functions are necessarily represented 

by the same node. Such a representation is known as a strong canonical form [61]. 
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3.2.2 Diagram Creation 

The unique table and factory functions provide the foundation for the creation of arbitrary 

MDD. MDDs can be created using different approaches. In this section, we describe the 

main rationale behind each approach, its advantages, and disadvantages. Finally, we show 

how some of the approaches can be combined and thus made more efficient. 

3.2.2.1 Static Creation 

Decision Tree (DT) that we described in section 2.4.4 is a graph structure made of the same 

type of nodes as MDD. However, unlike MDD, DT has a simple regular structure, which is 

easy to create. Therefore, the static approach starts with the creation of DT representing the 

desired function and then transforms it into MDD. To transform DT into MDD we apply the 

following steps on all levels of the DT in a bottom-up manner to eliminate redundant and 

duplicate nodes: 

1. Remove all redundant nodes on the current level. Each edge incoming into 

a redundant node will now point to its single son. 

2. Create a list of nodes for each group of duplicate nodes on the current level. 

a. Select and extract an arbitrary node from each list – these are the new 

unique nodes that will stay in the diagram. 

b. Each incoming edge into one of the nodes in any of the lists will now 

point to the node selected from the list. 

3. If all levels have been processed, end, otherwise go to step 1. 

The resulting MDD is ordered – it inherits the ordered property from the DT – and is also 

reduced, which is guaranteed by step 2. Fig. 3.11 shows an example of the transformation of 

a DT representing an integer function into MDD. Bold-outlined nodes mark a list of 

duplicate nodes and grayed nodes mark redundant nodes. Note that duplicate terminal nodes 

are kept for better readability. 
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2. 3. 4. 

   

Fig. 3.11 Transformation of a DT into MDD by the gradual elimination of redundant and duplicate 

nodes (redundant terminal nodes are removed in the last step for better readability) 

The above-described transformation follows Bryant’s description of the reduce 

algorithm [11] for BDDs. Unfortunately, the static approach is inefficient because of the size 

of the initial DT – which is exponential in the number of variables. The process is also 

inefficient due to the considerable number of nodes it initially creates only to be 

subsequently removed. There exists a slightly better algorithm for static creation called from-

vector [80]. The input of the algorithm is a truth vector (section 2.4.3) – practically the last 

level of the DT. The algorithm works in a similar bottom-up manner, but it avoids the 

creation of redundant and duplicate nodes. We provide a pseudocode of the from-vector 

algorithm in Alg. A.3. 

The static creation is not practical for larger functions due to its exponential 

complexity. However, it may be useful for the creation of smaller functions that are easier 

to describe using a truth table (truth vector). Such a function can be further processed using 

the dynamic approach that we describe later in this section. 
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3.2.2.2 Direct Creation 

Diagrams representing certain types of functions have a regular structure that we can utilize 

in the creation process. We call this function-specific approach the direct approach. The 

advantage of this approach is that it can create the diagram much faster than the general 

approaches. We have already encountered the direct approach in the creation of a terminal 

node (Alg. A.1) – representing a constant function – and the creation of an internal node 

(Alg. A.2). Fig. 3.12 shows an example of diagrams that can be easily created directly. 

  

Fig. 3.12 Simple decision diagrams representing a constant function (left) and an integer function 

of a single variable (right) 

3.2.2.3 Direct Creation of BDDs 

3.2.2.3.1 Logical Conjunction and Disjunction 

A very simple diagram type that we can create directly is BDD representing the function of 

logical conjunction (𝑓) or logical disjunction (𝑔) of 𝑛 variables defined as: 

 𝑓(𝒙) = 𝑥1 ∧ 𝑥2 ∧ … ∧ 𝑥𝑛 (3.4) 

 𝑔(𝒙) = 𝑥1 ∨ 𝑥2 ∨ … ∨ 𝑥𝑛. (3.5) 

Fig. 3.13 shows BDDs representing functions 𝑓 and 𝑔 respectively. Function (3.4) evaluates 

to 1 if and only if all variables have a value of 1 and to 0 otherwise. Similarly, function (3.5) 

evaluates to 1 if and only if at least one of the variables has a value of 1 and to 0 otherwise. 

This also follows from the fact that 0 is the absorbing element for the logical conjunction 

operation and 1 is the absorbing element for the logical disjunction operation. As the figure 

shows, BDDs elegantly capture this property. In each internal node, there is a possibility to 

go straight to a terminal node if the variable associated with a given node has a value equal 

to the absorbing element. We can also see that both BDDs have the same structure, the only 

difference is labels on the edges and values in the terminal nodes. Also, note, that variables 

in the conjunction and disjunction can be negated. In such a case the only modification is 

that we swap outgoing edges of the nodes.  
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Fig. 3.13 BDDs representing logical conjunction (left) and logical disjunction (right) of 𝑛 Boolean 

variables 

Functions (3.4) and (3.5) agree with the definitions of series and parallel systems. Therefore, 

we can utilize the direct approach in the reliability analysis of such systems [81]. However, 

the more interesting use case is the representation of series-parallel systems. The creation of 

a decision diagram representing a series-parallel system is an exemplary case where we can 

utilize both the dynamic and the direct approach. During the creation, we dynamically merge 

directly created diagrams representing series and parallel parts of the system. 

Disjunctive Normal Form (DNF) also known as Sum of Products (SoP) is 

a commonly used expression representation of the Boolean function [8]. In general, it 

consists of logical conjunctions joined by logical disjunctions. The following expression: 

 𝑓(𝒙) = 𝑥1𝑥2̅̅ ̅𝑥3 ∨ 𝑥2𝑥3̅̅ ̅ ∨ 𝑥1𝑥2𝑥3̅̅ ̅, (3.6) 

shows an example of DNF. To create a BDD for a function defined in the form of DNF we 

again can utilize both approaches by first directly creating a BDD for each product and 

subsequently dynamically merging them. 

3.2.2.3.2 Parity Function 

Another Boolean function that has regular representation in the form of BDD is a parity 

function of 𝑛 variables [11]. The function is defined using the logical exclusive disjunction 

operation (XOR) in the following way: 

 𝑓(𝒙) = 𝑥1 ⊕ 𝑥2 ⊕ … ⊕ 𝑥𝑛. (3.7) 
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It evaluates to 1 if and only if an odd number of variables has a value of 1 and to 0 otherwise. 

Fig. 3.14 shows BDD representing the odd parity function of 3 variables. Except for the 

variable at the root, each variable has exactly two nodes associated with it. As Bryant 

notes [11], the diagram has a ladder-like structure. In the figure, we can see that internal 

levels are identical for all variables (except the root one). Therefore, to create the diagram 

directly we add as many internal levels as necessary.  

3.2.2.3.3 Structure 𝒌-out-of-𝒏 

A system with 𝑘-out-of-𝑛 structure is a specific system type that we have described in 

section 1.3.3. Structure function of such a system evaluates to 1 if and only if at least 𝑘 

variables have value of 1. BDD representing the structure function has a regular structure 

and, therefore, can be created directly, though, its structure is a bit more complicated. 

Parameters 𝑘 and 𝑛 influence the structure of the diagram. At the first 𝑛 − 𝑘 + 1 levels of 

the diagram there exists a path starting at the first node on the left of the level that continues 

via 1-labeled edges of nodes in the path through the next 𝑘 − 1 levels ending in terminal 

node representing the value 1. Fig. 3.14 shows BDD representing 3-out-of-5 BSS (note that 

duplicate terminal nodes are kept for better readability). In the figure, we can see that on the 

left of the first 3 (in general 𝑛 − 𝑘 + 1) levels a path starts that is terminated at the terminal 

node representing the value 1 containing 3 (𝑘 in general) 1-labeled edges. 

  

Fig. 3.14 BDD representing odd parity function of 3 variables  (left) and BDD representing 

structure function of 3-out-of-5 BSS (right) 
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𝐾-out-of-𝑛 system is a special case of a more general 𝑘-to-𝑙-out-of-𝑛 system. Such a system 

is operation if at least 𝑘 but no more than 𝑙 components are operational. Let us not that such 

a system is an example of a noncoherent system (section 1.2.1). We can also directly create 

a BDD representing such a system [81], which has a similar just a bit more complicated 

structure. 

3.2.2.3.4 Symmetric Functions 

All the above-mentioned functions have a common property – they are symmetric functions. 

Therefore, it is no coincidence the BDDs representing the functions have a regular structure. 

In fact, it is a property of a reduced ordered diagram that when it represents a symmetric 

function of 𝑛 variable it has some type of a regular structure that has at most O(𝑛2) 

nodes [11]. 

3.2.2.4 Direct Creation of MDDs 

3.2.2.4.1 Min and Max Functions 

Just like with the functions of logical conjunction (3.4) and logical disjunction (3.5), we can 

also create MDDs representing their generalization – the min (𝑓) and max (𝑔) functions: 

 𝑓(𝒙) = min(𝑥1, 𝑥2, … , 𝑥𝑛), (3.8) 

 𝑔(𝒙) = max(𝑥1, 𝑥2, … , 𝑥𝑛). (3.9) 

In Fig. 3.15, we can see MDDs representing integer functions (3.10) and (3.9), in the case 

when 𝑚 = 3. Even though the structure looks a bit more complicated than the BDD 

counterparts, it is regular and can be created directly. Each internal level except the first level 

contains exactly 𝑚 − 1 internal nodes. At each level the edges representing the absorbing 

value of the operation lead directly to the terminal node and the rest of the edges lead to the 

nodes on the next level. In general, there are 𝑛 ∗ 𝑚 − 1 internal nodes in the diagram. 
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Fig. 3.15 BDDs representing the min function (left) and the max function (right) of 𝑛 integer 

variables 

3.2.2.4.2 Structure 𝒌-out-of-𝒏 

Construction of MDDs representing various types of multi-state 𝑘-out-of-𝑛 systems follows 

the same ideas as the simpler case of the BSS (section 3.2.2.3.3). However, their structure is 

more complicated – it consists of layers of structures like the structure depicted in 

Fig. 3.14 [82] i.e., the regular structure of the diagram can be seen in a three-dimensional 

layout. Furthermore, there also exist a few special cases such as 𝑘-out-of-(2𝑘 − 1) 

systems [83], which can be represented by an MDD with a regular structure. 

3.2.2.5 Dynamic Creation  

The static and direct approaches are useful in the creation of specific functions. However, 

they are not suitable for general diagram creation. For that, we use the so-called dynamic 

approach, which utilizes Shannon’s expansion described in section 3.1.2. The principal idea 

is to first split the function into multiple simpler functions joined with binary operations. 

Then we start by directly or statically creating diagrams for the simpler functions. After that, 

we continue by gradually merging those diagrams into more complicated ones. In the end, 

we are left with a single diagram representing the desired function. 

3.2.2.5.1 Apply 

The merger of two diagrams can be realized using a recursive algorithm called apply 

introduced for BDDs by Bryant [11][84] and later generalized for MDDs [12]. The 
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algorithm uses the following two recursive relations derived from Shannon’s expansions. 

For two Boolean functions 𝑓 and 𝑔 and Boolean binary operation ⊙ it holds that [11]: 

 (𝑓 ⊙ 𝑔)(𝒙) = 𝑥𝑖(𝑓(1𝑖, 𝒙) ⊙ 𝑔(1𝑖, 𝒙)) ∨ 𝑥𝑖̅(𝑓(0𝑖, 𝒙) ⊙ 𝑔(0𝑖, 𝒙)), (3.10) 

and generalized for two integer functions 𝑓 and 𝑔 and binary operation ⊙ it holds that [12]: 

  

(𝑓 ⊙ 𝑔)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (𝑓(𝑘𝑖, 𝒙) ⊙ 𝑔(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

. (3.11) 

The input of the apply algorithm is two diagrams and a binary operation ⊙ closed on the 

codomain of the function i.e., of the following form: 

 {0,1, … , 𝑚 − 1}2 → {0,1, … , 𝑚 − 1}, (3.12) 

The algorithm is invoked on the roots of the diagrams. In each step, it visits a pair of nodes 

– one from each diagram – and either creates an internal or terminal node. The terminal node 

can be created in two situations: 

1. When both nodes are terminal in which case the value in the new node is determined 

by applying the binary operation ⊙ on the values represented by the nodes. 

2. When one of the nodes is a terminal node representing an absorbing element of the 

binary operation ⊙. Then, the value in the new node is the absorbing element. 

The creation of the terminal node is the terminating case for the recursion. 

Most of the time, the nodes that enter the step are both internal nodes (or one of them 

is a terminal representing a non-absorbing element). Let 𝐴 and 𝐵 be nodes that entered the 

step. Let us assume without loss of generality that 𝑖𝐴 < 𝑖𝐵. If one of the nodes is terminal, 

we proceed as if it had the index equal to its level in which case it will certainly be greater 

than the other index. The result of the step is a new internal node associated with a variable 

𝑥𝑖𝐴
. The 𝑚𝑖𝐴

 sons of the new node are obtained with a recursive call of the step with a pair 

(𝐴𝑘, 𝐵) for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1. Alg. A.4 presents complete pseudocode. 

An essential part of the apply algorithm is to avoid processing the same pair of nodes 

multiple times. If this is satisfied the complexity of the algorithm is O(𝓈1 ∗ 𝓈2) where 𝓈1, 𝓈2 

are the sizes of the input diagrams. This can be achieved by maintaining a cache table with 

a pair of pointers to nodes that entered the step of the algorithm as key and a pointer to the 

node created in the step as value. In each step the cache table is first queried, and if there 

already is an entry for the current pair of nodes that node is returned as the result of the step. 

The algorithm can be made more efficient thanks to the node sharing and 

immutability of nodes (section 3.2.1). The improvement can be made by following the 
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observation that if node 𝐶 is the result of step of the apply call with nodes 𝐴, 𝐵 and operation 

⊙ it will also always be the result in the future if the step is called with the same arguments. 

Thus, it is beneficial to maintain the cache table globally – shared for all apply calls. The 

cache requires a small adjustment in this case. Since apply works for any binary operation, 

the operation (unique integer ID) must be part of the key. Therefore, a cache query could 

have the following form CONTAINS (𝑎𝑝𝑝𝑙𝑦𝐶𝑎𝑐ℎ𝑒, (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, GETID(⊙))). Since many 

binary operations are commutative, further improvement can be made by adjusting the cache 

table in such a way that keys (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, GETID(⊙)) and (𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡, GETID(⊙)) map to 

the same value. For instance, if we use a hash table to implement the cache, we can utilize 

some symmetric function (e.g. bitwise exclusive OR) to combine hashes HASH(𝑙𝑒𝑓𝑡) and 

HASH(𝑟𝑖𝑔ℎ𝑡) and adjust the equality comparison so that it compares the key triplets as sets 

(i.e. not considering the order of elements). Finally, the last aspect of caching to consider is 

the size of the cache table, which could grow significantly for larger diagrams. Because of 

this, many implementations use a fixed size for the table. For example, a hash table may 

resolve collisions by overwriting existing entries. This can result in re-computation of some 

results but provides a reasonable tradeoff with the memory complexity of the algorithm. 

Fig. 3.16 shows an example of the apply algorithm in the merger of two BDDs using 

the logical conjunction. Nodes of the input diagrams are marked using upper-case letters, 

and the nodes of the resulting diagram are marked using a pair of letters, which signifies 

nodes from the input diagrams that were processed in the step that created the resulting node. 

   

Fig. 3.16 Merger of two BDDs representing Boolean functions 𝑓(𝒙) = 𝑥1𝑥2̅̅ ̅ (left) and 𝑔(𝒙) = 𝑥2 ∨
𝑥3 (middle) using the apply algorithm with logical conjunction 
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3.2.2.5.2 ITE and CASE 

There exists an alternative to the apply algorithm for Boolean functions – the If-Then-Else 

(ITE) operator [61]. ITE is a ternary Boolean operator defined as: 

 ITE(𝐴, 𝐵, 𝐶) = 𝐢𝐟 𝐴 𝐭𝐡𝐞𝐧 𝐵 𝐞𝐥𝐬𝐞 𝐶, (3.13) 

where 𝐴, 𝐵, and 𝐶 are Boolean functions (nodes of a diagram). Like apply, using the ITE 

operator we can create BDD for any function by merging BDDs of simpler functions. Also, 

like apply, the merger of diagrams using ITE is a recursive procedure. However, unlike 

apply, the ITE operator does not take a Boolean binary operation as its input. Instead, all 

Boolean operations can be defined in terms of the ITE operator [60]. Tab. 3.3 contains the 

definitions for common Boolean operations. 

The ITE operator is limited to BDDs and Boolean functions. A generalization called 

CASE exists that can manipulate MDDs and integer functions. CASE is a (𝑚 + 1)-ary 

operation defined in a way similar to the generalized Shannon’s expansion (3.2) as [12]: 

 

CASE(𝐴, 𝐵1, 𝐵2, … , 𝐵𝑚−1) = ∑ ({𝐴 ↔ 𝑘} ∗ 𝐵𝑘)

𝑚−1

𝑘=0

. (3.14) 

Just like with the ITE operator, we can use the CASE operator to define common 

operations such as min and max [85] for an 𝑚-valued logic function. In Tab. 3.4 we show 

the definitions for the 4-valued logic function presented in [85]. Generalization to 𝑚-valued 

logic is relatively straightforward, thou not as simple as using the apply operation. 

Tab. 3.3 Definitions of common Boolean operations in terms of the ITE operator 

Name Expression ITE form 

Logical negation 𝑎̅ ITE(𝑎, 0,1) 

Logical conjunction 𝑎𝑏 ITE(𝑎, 𝑏, 0) 

Negated logical conjunction (NAND) 𝑎𝑏̅̅ ̅ ITE(𝑎, 𝑏̅, 1) 

Logical disjunction 𝑎 ∨ 𝑏 ITE(𝑎, 1, 𝑏) 

Negated logical disjunction (NOR) 𝑎 ∨ 𝑏̅̅ ̅̅ ̅̅ ̅ ITE(𝑎, 0, 𝑏̅) 

Exclusive logical disjunction (XOR) 𝑎 ⊕ 𝑏 ITE(𝑎, 𝑏̅, 𝑏) 

Tab. 3.4 Definitions of min and max operations in 4-valued MLV using the CASE operator 

Name Expression CASE form 

Minimum min(𝐴, 𝐵) CASE(𝐴, 0, CASE(𝐵, 0,1,1,1), CASE(𝐵, 0,1,2,2), 𝐵) 

Maximum max(𝐴, 𝐵) CASE(𝐴, 𝐵, CASE(𝐵, 1,1,2,3), CASE(𝐵, 2,2,2,3), 3) 
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3.2.3 Extended Apply 

The basic apply algorithm described in section 3.2.2 accepts any binary operation of the 

form (3.12) as its input. However, in some situations, the functions that we need to represent 

contain 𝑑-ary operators. As an example, let us consider a simple logic circuit depicted in 

Fig. 3.17, which implements the following Boolean function: 

 𝑓(𝒙) = 𝑥1𝑥2𝑥3 ∨ 𝑥4. (3.15) 

If we wanted to create BDD representing function (3.15), using the apply algorithm, it would 

be called in the following way: 

APPLY(APPLY(APPLY(𝑋1, 𝑋2,∧), 𝑋3,∧), 𝑋4,∨), 

where symbol 𝑋𝑖 represents BDD representing variable 𝑥𝑖. However, since the AND gate 

that realizes the logical conjunction is a three-input gate, it would be more convenient and 

descriptive to use the apply algorithm in the following way: 

APPLY(APPLY(𝑋1, 𝑋2, 𝑋3,∧), 𝑋4,∨) 

i.e., to be able to call apply with three input diagrams instead of two. 

 

Fig. 3.17 Simple combinatorial circuit with four inputs and one output 

Any series of applications of binary associative operation ⊙ can be easily extended to 

a single 𝑑-ary operation denoted as ⊙𝑑 in the following way: 

 𝑓1 ⊙ (𝑓2 ⊙ (… (𝑓𝑑−1 ⊙ 𝑓𝑑) … )) 

= 𝑓1 ⊙ 𝑓2 ⊙ … ⊙ 𝑓𝑑−1 ⊙ 𝑓𝑑  

=⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑). 

(3.16) 

The 𝑑-ary version ⊙𝑑 of the operation ⊙ is simply defined in terms of multiple applications 

of the binary version of the operation. Using the notation ⊙𝑑, we can also express the 

relation (3.16) as the following recurrent relation: 
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 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑘−1, 𝑓𝑑) 

=⊙𝑑−1 (𝑓1, 𝑓2, … ,⊙2 (𝑓𝑑−1, 𝑓𝑑)) 

=⊙𝑑−2 (𝑓1, 𝑓2, … ,⊙2 (𝑓𝑑−2,⊙2 (𝑓𝑑−1, 𝑓𝑑))) 

= ⋯ 

=⊙2 (𝑓1,⊙2 (𝑓2,⊙2 (… ,⊙2 (𝑓𝑑−2,⊙2 (𝑓𝑑−1, 𝑓𝑑)) … ))). 

(3.17) 

Furthermore, we can express the relation (3.11) that is a key part of the apply operation as 

follows: 

 ⊙2 (𝑓1, 𝑓2)(𝒙) 

=⊙2 (𝑓1(𝒙), 𝑓2(𝒙)) 

= ∑ {𝑥𝑖 ↔ 𝑘} ∗ (⊙2 (𝑓1(𝑘𝑖, 𝒙), 𝑓2(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

. 

(3.18) 

If expressions 𝑓1, 𝑓2, … , 𝑓𝑑 in formula (3.17) are functions of the same variables defined by 

Boolean vector 𝒙, the recurrent relationship defined by formula (3.17) can be transformed 

into the following relationship: 

 

 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑)(𝒙) 

=⊙𝑑 (𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙)) 

=⊙𝑑−1 (𝑓1(𝒙), 𝑓2(𝒙), … ,⊙2 (𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙))) 

= ⋯ 

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1(𝒙), 𝑓𝑑(𝒙)) … )) 

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) … )(𝒙)). 

(3.19) 

By combining this formula with formula (3.18), we obtain: 

 

⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑−1, 𝑓𝑑)(𝒙) 

= ⋯ 

=⊙2 (𝑓1(𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) … )(𝒙)) 

= ∑ {𝑥𝑖 ↔ 𝑘} ∗ (⊙2 (𝑓1(𝑘𝑖, 𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1, 𝑓𝑑) … ))(𝑘𝑖, 𝒙))

𝑚𝑖−1

𝑘=0

 

= ∑ {𝑥𝑖 ↔ 𝑘} ∗

𝑚𝑖−1

𝑘=0

(⊙2 (𝑓1(𝑘𝑖, 𝒙),⊙2 (… ,⊙2 (𝑓𝑑−1(𝑘𝑖, 𝒙), 𝑓𝑑(𝑘𝑖, 𝒙)) … ))). 

(3.20) 
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Finally, according to (3.16), nested parentheses in (3.20) can be removed by replacing the 

prefix operator ⊙2 by the infix version ⊙. This results in an extended version of the 

relation (3.11): 

 

⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

. (3.21) 

Using this relation, we present a novel extended version of the apply algorithm, which 

accepts 𝑑-tuple of diagrams and 𝑑-ary operation. The algorithm is one of the contributions 

of this thesis. The new version is similar to the apply algorithm described in section 3.2.2. 

The key difference is that in each step it visits 𝑑-tuple of nodes, one from each diagram. 

Alg. 3.1, Alg. 3.2, and Alg. 3.3 contains the complete pseudocode of the extended apply. In 

the pseudocode, functions like ROOT, VALUE, INDEX, or the auxiliary GETSON applied on the 

tuple operate on each element of the tuple separately returning a tuple of individual results.  

procedure EXTENDEDAPPLY((D1, D2, ..., Dd), ⊙d) 

  root ← EXTENDEDAPPLYSTEP(ROOT((D1, D2, ..., Dd)), ⊙d) 

  return MDD(root) 

end procedure 

Alg. 3.1 Entry point of the extended apply algorithm 

procedure EXTENDEDAPPLYSTEP((N1, N2, ..., Nd), ⊙d) 

  if CONTAINS(applyCache, (N1, N2, ..., Nd)) then 

    return LOOKUP(applyCache, (N1, N2, ..., Nd)) 

  end if 

  node ← NULL 

  if ALLTERMINAL((N1, N2, ..., Nd)) then 

    node ← CREATETERMINALNODE(⊙d(VALUE((N1, N2, ..., Nd)))) 

  else if ANYABSORBING(⊙, (N1, N2, ..., Nd)) then 

    node ← CREATETERMINALNODE(ABSORBINGELEMENT(⊙)) 

  else 

    i ← min(LEVEL((N1, N2, ..., Nd))) 

    sons ← MAKETUPLE(mi ) 

    for k = 0 to mi do 

      sons[k] ← EXTENDEDAPPLYSTEP(GETSON(i, (N1, N2, ..., Nd), k), ⊙d) 

    end for 

    node ← CREATEINTERNALNODE(i, sons) 

  end if 

  PUT(applyCache, (N1, N2, ..., Nd), node) 

  return node 

end procedure 

Alg. 3.2 Recursive step of the extended apply algorithm 
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procedure GETSON(i, node, k) 

  if INDEX(node) = i then 

    return SON(node , k) 

  else 

    return node 

  end if 

end procedure 

Alg. 3.3 Helper function used in the step of the extended apply algorithm 

The extended apply algorithm gives the same results as multiple calls of the basic apply 

algorithm. Its main advantage is the convenience – a single call to the extended apply can 

replace multiple nested calls to the basic apply. On the other hand, its disadvantage may lie 

in its complexity, which is O(𝓈1 ∗ 𝓈2 ∗ … ∗ 𝓈𝑑), since, in the worst case, we process each 𝑑-

tuple of nodes. 

The big-O notation sets the upper bound on the number of steps of the algorithm, 

which may not necessarily reflect the real performance of the algorithm. Therefore, an 

experimental comparison of the apply and extended apply is an interesting task. Furthermore, 

the comparison may also provide insight into the feasibility of the extended apply since its 

heavy utilization of the recursion may be limited by the default size of the call stack. 

 

3.2.4 Diagram Manipulation 

Diagrams can be queried, evaluated, and manipulated in various ways. In this section, we 

describe selected diagram algorithms that we use later in the description of algorithms for 

reliability analysis. 

3.2.4.1 Satisfy-count 

The first algorithm that we describe is called satisfy-count introduced by Bryant [11] for 

BDD. We describe a version generalized to MDD. Satisfy-count is a simple query on the 

diagram that returns the number of satisfying variable assignments i.e., if the diagram 

represents a function 𝑓 the algorithm returns the number of input vectors 𝒙 such that 𝑓(𝒙) =

𝑗 where the diagram and the value 𝑗 are parameters of the algorithm. 



DISSERTATION THESIS 

75 

 

 

Fig. 3.18 Evaluation of a function represented by a decision diagram 

The pseudocode of the algorithm is presented in Alg. A.5. To understand the rationale of the 

algorithms first let us consider a simpler algorithm that only counts the number of paths from 

the root node to the terminal node containing the value 𝑗. Each internal node on a path from 

the root node to a terminal node represents all possible values of the variable 𝑥𝑖. Therefore, 

the number of paths starting at a given internal node can be calculated as the sum of the 

number of paths starting at each son of the node. However, an edge can skip over some levels 

and therefore a single path can correspond to multiple input vectors, as we can see in 

Fig. 3.18. In the figure, the highlighted path corresponds to three state vectors. Thus, to 

account for the skipped levels, we need to multiply the number obtained from the son by the 

number of vectors corresponding to skipped levels. In the pseudocode, this number is 

calculated by the DOMAINPRODUCT function. 

3.2.4.2 Cofactor 

We have encountered cofactor (3.2) in the definition of the decision diagram and the apply 

algorithm for its dynamic creation. However, in neither of these situations, we were required 

to calculate the cofactor of a function directly. Nevertheless, the calculation of the cofactor 

of a function is an essential step in various algorithms – for example, in the calculation of 

logic derivatives described further in section 3.3.4. 
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The cofactor algorithm for MDD is a generalization of the restrict2 algorithm 

proposed by Bryant [11] for BDD. Computation of cofactor 𝑓(𝑎𝑖, 𝒙) is a simple 

transformation of the diagram. The core idea is to remove all internal nodes associated with 

variable 𝑥𝑖 and redirect all edges ending in such nodes into its 𝑎th son (where 𝑎 ∈

{0,1, … , 𝑚𝑖 − 1}). However, the operation must maintain the invariants of node uniqueness 

and node immutability. Therefore, the algorithm produces a new diagram representing the 

cofactor without altering the original diagram. The new diagram, however, may share many 

nodes with the original. The pseudocode of the algorithm is presented in Alg. A.6. 

In Fig. 3.19, we can see an example of MDD representing function 𝑓(𝒙) and MDD 

representing the cofactor 𝑓(21, 𝒙). The grey node in the right part of the image highlights 

the difference between the original MDD and its cofactor. 

  

Fig. 3.19 MDD representing function 𝑓(𝒙) (left) and MDD representing cofactor 𝑓(21, 𝒙) 

The basic version of the cofactor algorithm presented in the pseudocode fixes the value of 

only one variable at a time. However, in some situations, we need to fix the value of multiple 

variables. This can be achieved by simply using the cofactor algorithm multiple times. 

Unfortunately, such an approach would result in repetitive re-computations. A much better 

approach is to generalize the cofactor algorithm so that it accepts a list of pairs (𝑖, 𝑎). The 

generalized version works in a very similar way with the difference that it “skips” nodes on 

multiple levels – specified in the list of pairs. 

 

 

 

2 Cofactor of a function is also known as restriction of a function in some literature – hence the name 

of Bryan’s algorithm 
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3.2.4.3 Transform 

Another algorithm that we utilize in the calculation of logic derivatives is the transform 

algorithm. This algorithm operates on the values of the function stored in the terminal nodes, 

transforming them using function 𝛾 of the following form: 

 𝛾(𝑎): {0,1, … , 𝑚 − 1} → {0,1, … , 𝑚 − 1}, (3.22) 

where 𝑎 ∈ {0,1, … , 𝑚 − 1}. Just like the cofactor algorithm, the transform algorithm’s core 

part is a recursive step. The pseudocode of the algorithm is presented in Alg. 3.4 and 

Alg. 3.5. Implementation of the step is rather simple. When it visits an internal node it simply 

recurses deeper into the diagram and afterward creates a new node. The transformation 

happens when the step visits a terminal node 𝐴 in which case its returns new terminal node 

representing value 𝛾(𝐴). 

The transform algorithm can be used to implement various unary operations [9] such 

as complement, successor, or predecessor. For example, to define the complement of 

an integer function we would use the function 𝛾1 defined as: 

 𝛾1(𝑎) = 𝑚 − 1 − 𝑎.  (3.23) 

Fig. 3.20 depicts an example of an MDD representing an integer function and an MDD 

representing the complement of the function obtained using the transform algorithm. 

Another frequent use case is when we need to narrow the codomain of a function – for 

instance, to transform it into a pseudo-logic function (2.5). In such a case, we may use the 

following 𝛾2 function (possibly with any other relational operator): 

 
𝛾2(𝑎) = {

1, 𝑎 ≥ 𝑗
0, otherwise,

 (3.24) 

where 𝑗 ∈ {0,1, … , 𝑚 − 1}. 

Finally, the last, less obvious, use case that we present is in the implementation of 

the reduce algorithm [11]. The reduce algorithm transforms any MDD that contains 

duplicate or redundant nodes into canonical form by “removing” all such nodes. The 

algorithm can be implemented using the transformation with the identity function defined 

as: 

 𝛾3(𝑎) = 𝑎. (3.25) 

The resulting diagram contains no duplicate and no redundant nodes thanks to the 

factory functions (Alg. A.1, Alg. A.2), since each node is re-created by the functions – which 

only produce unique nodes. 
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Fig. 3.20 MDD representing an integer function (left) and MDD representing complement of the 

function (right) 

Let us note that the same transformation of an MDD can be achieved by using the 

apply algorithm with a binary operation and an MDD representing a constant function with 

a value equal to the neutral element of the binary operation. However, we consider such 

a solution less efficient and less readable. Thus, we present the pseudocode directly in this 

section although the algorithm itself and ideas it utilizes are not exactly novel. 

procedure TRANSFORM(diagram, γ) 

  root ← ROOT(diagram) 

  newRoot ← TRANSFORMSTEP(root, γ) 

  return MDD(newRoot) 

end procedure 

Alg. 3.4 Entry point of the transform algorithm 

procedure TRANSFORMSTEP(node, γ) 

  if ISTERMINAL(node) then 

    return CREATETERMINALNODE(γ(VALUE(node))) 

  end if 

  if CONTAINS(memo, node) then 

    return LOOKUP(memo, node) 

  end if 

  i ← INDEX(node) 

  sons ← MAKETUPLE(mi) 

  for k = 0 to mi do 

    oldSon ← SON(node, k) 

    sons[k] ← TRANSFORMSTEP(oldSon, γ) 

  end for 

  newNode ← CREATEINTERNALNODE(j, sons) 

  PUT(memo, node, newNode) 

  return newNode 

end procedure 

Alg. 3.5 Recursive step of the transform algorithm 
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3.2.4.4 General Diagram Manipulation 

When we analyze the pseudocodes of the cofactor and transform algorithms, we may notice 

that their step has a similar structure – which is no coincidence. As a matter of fact, we would 

see a similar structure in the implementation of other algorithms as well. In Alg. 3.6 we 

present a pseudocode that tries to capture a general structure of a recursive diagram 

transforming the algorithm. 

In the pseudocode, there are a few conditions that terminate the recursion. The first 

one (denoted as (a)) deals with memoization, which we address below. The second one 

(denoted as (b)) identifies a situation that does not require further evaluation – the 

identification of the situation is checked by the function NONEEDTOCONTINUE. An example 

of such a situation can be found in the cofactor algorithm (Alg. A.6). The third point 

(denoted as (c)) is checked by the NEEDSPROCESSING function, which identifies nodes that 

require some transformation, which is expressed by the PROCESS function. At this point, the 

processing function can terminate the recursion (as we do in the pseudocode) or the 

processing of the diagram may continue – depending on the specifics of the algorithm. 

Finally, let us note the presented general algorithm does a transformation of the node 

that entered the step. However, the result of the step does not necessarily need to modify the 

node (more precisely, to return a new node). It can also just compute and return some value 

like the satisfy-count algorithm (Alg. A.5) does. 

procedure GENERALSTEP(node, ...) 

  if CONTAINS(memo, node) then   ▷ (a) 

    return LOOKUP(memo, node)  

  end if 

  if NONEEDTOCONTINUE(node) then   ▷ (b) 

    return node 

  end if 

  if NEEDSPROCESSING(node) then   ▷ (c) 

    return PROCESS(node)  

  end if 

  i ← INDEX(node) 

  sons ← MAKETUPLE(mi) 

  for k = 0 to mi do 

    oldSon ← SON(node, k) 

    sons[k] ← GENERALSTEP(oldSon, ...)  

  end for 

  newNode ← CREATEINTERNALNODE(j, sons) 

  PUT(memo, node, newNode)  

  return newNode 

end procedure 

Alg. 3.6 General structure of a step of a recursive diagram manipulation algorithm 
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3.2.4.4.1 Result Memoization 

Considering the efficiency of the algorithm utilizing the step, the essential part of the step is 

the memoization of the results. Since the nodes are immutable, the step must always return 

the same result for the same input node3. The step of the algorithm may try to visit some 

nodes more than once because of the node sharing. Consequently, to avoid expensive 

recomputations that would necessarily lead to the same result we maintain a lookup table of 

computed results – a memo. A key to the table is a pointer to the input node and the value is 

either a pointer to a new node or some numeric value – depending on the specifics of the 

actual algorithm. Our library TeDDy also implements an alternative to the lookup table – it 

uses the nodes themselves to store the results of the computation at the given node. 

The memoization ensures that each node is processed at most once. Therefore, the 

computation complexity of the algorithm is O(𝓈 ∗ 𝔬 ∗ 𝓉), where 𝓈 is the number of nodes in 

the diagram, O(𝔬) is the complexity of the node processing, and O(𝓉) is the complexity of 

querying the table. Typically, the complexity of the node processing operation is O(1). The 

complexity of the table query depends on the implementation of the table. For example, 

when a hash table is used, the complexity is also O(1). Our approach of storing the 

memoized result in the nodes also has complexity O(1). Consequently, the complexity of 

the algorithm is practically O(𝓈). 

3.2.4.4.2 Order of Variables 

In all pseudocodes, we assumed – for simplicity – that the diagram uses the default order of 

variables. However, when we consider other orders of variables, we need to differentiate 

INDEX(𝐴) and LEVEL(𝐴). A possible approach is to also store the level of a node as its 

property. However, such an approach would use more memory than necessary. Since there 

is a close relation between the level and index of nodes on that level, it is sufficient to 

maintain two mappings – level-to-index and index-to-level, which can be simply 

implemented as arrays where the index corresponds to level and index respectively. 

 

 

 

3 With the assumption that the step is not part some randomized algorithm – neither of the algorithms 

that we consider in the thesis involve randomness. 
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3.3 Decision Diagrams in Reliability Analysis 

The structure function is an integral part of the reliability analysis. Definitions (1.1), (1.2), 

and (1.3) of the structure function agree with definitions (2.2), (2.3), and (2.4) of different 

discrete functions. Thus, an obvious application of decision diagrams is the representation 

of the structure function. In this section, we describe the evaluation of selected reliability 

characteristics of a system using the structure function represented by a decision diagram. 

3.3.1 Structure Function Representation 

The typical approach to the representation of the structure function is to represent the 

function with a single MDD. In section 3.2.2 and section 3.2.3, we have presented various 

approaches to the construction of the MDD. The diagram construction is a crucial aspect of 

the reliability analysis of complex systems, because of the considerable size of the diagram. 

Besides the straightforward approach to the structure function representation, there 

exists an alternative option for the description of MSS. The idea is to describe each system 

state individually using a pseudo-logic function [86]. For example, let us consider a structure 

function 𝜙(𝒙) describing a 3-state MSS. Then we can use two functions 𝜙(𝒙) ≥ 1 and 

𝜙(𝒙) ≥ 2 to fully describe the system. In general, for an 𝑚-state MSS, we need to use 𝑚 −

1 functions describing states 1,2, … , 𝑚 − 1. In Fig. 3.21 we can see an example of a structure 

function describing 3-state MSS represented using both approaches.  

  

Fig. 3.21 Structure function 𝜙(𝒙) represented using a single diagram (left) and a series of diagrams 

(right) representing functions 𝜙(𝒙) ≥ 1 and 𝜙(𝒙) ≥ 2 respectively (right) 
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An interesting question is whether one of the approaches is more efficient with regard to the 

number of unique nodes in the diagrams or the speed of algorithms operating on the 

diagrams.  

3.3.2 Topological Analysis 

System state frequency 𝐹𝑟=𝑗 (1.9) is a simple topological characteristic of a system. It is 

defined as the relative number of state vectors for which the system described by structure 

function 𝜙 is in state 𝑗:  

 𝐹𝑟=𝑗 =
𝛼𝜙,𝑗

𝛼𝜙
, (3.26) 

where 𝛼𝜙 denotes the total number of state vectors i.e., the size of the domain of the function 

(Tab. 2.1), and 𝛼𝜙,𝑗 denotes the number of state vectors 𝒙 such that 𝜙(𝒙) = 𝑗. Therefore, to 

calculate the state frequency we need to calculate the numbers 𝛼𝜙,𝑗 and 𝛼𝜙. 𝛼𝜙 can be 

calculated by simply multiplying the domains of all variables: 

 
𝛼𝜙 = ∑ 𝑚𝑖

𝑛

𝑖=1

, (3.27) 

which simplifies to: 

 𝛼𝜙 = 𝑚𝑛, (3.28) 

for the 𝑚-valued logic function. 

A straightforward approach to the calculation of 𝛼𝜙,𝑗 would be to evaluate the system 

for each possible state vector and count the number of satisfying input vectors. However, 

such a naive approach would be computationally infeasible even for tens of variables. 

Evaluation of the diagram is a simple traversal from the root to a terminal node as 

shown in Fig. 3.18. In general, the number of state vectors corresponding to a path 𝓅 can be 

calculated using the following formula: 

 𝛼𝓅 = ∏ 𝑚𝑖

𝑖∈ℐ𝓅
′

, 
(3.29) 

where ℐ𝓅
′  is the set of indices of variables that are not present in path 𝓅. Therefore, 

an improvement to the calculation can be made by using the following formula: 

 

𝛼𝜙,𝑗 = ∑ 𝛼𝓅

𝒫𝑗

𝓅

, (3.30) 
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where 𝒫𝑗 is the set of all paths leading to the terminal node representing value 𝑗. 

Unfortunately, even the improved approach does not scale well since the number of possible 

paths is still considerable – it may depend on the number of variables exponentially. 

Fortunately, it is possible to count the number of satisfying input vectors – which, in 

our case, is equivalent to the number of state vectors – of an integer function represented by 

MDD using the satisfy-count algorithm described in section 3.2.4. 

The solution utilizing the satisfy-count algorithm is efficient with respect to the 

number of nodes – the complexity of the algorithm is O(𝓈) where 𝓈 is the number of nodes 

in the diagram. However, it has a technical limitation. The number 𝛼𝜙,𝑗 can be very large 

even for tens of variables. The problem is that many programming languages are limited by 

the finite precision of their numeric types – typically 64-bit integers. The problem can be 

addressed by using a library for multiple precision arithmetic such as GMP [87]. 

Nevertheless, the computation for larger functions – containing hundreds or thousands of 

variables – would involve computation with huge numbers and therefore could be time-

consuming. 

This problem can be partially addressed in the case of BSS analysis. A modification 

of the satisfy-count algorithm exists called satisfy-count-ln4, which – as the name suggests – 

calculates the logarithm of the number of satisfying input vectors i.e., the number log2 𝛼𝜙,𝑗. 

Since the algorithm works with logarithms, it is not susceptible to integer overflows. 

Knowing the logarithm log2 𝛼𝜙,𝑗, we can subsequently calculate the state frequency by 

rewriting the definition (3.26) in terms of logarithms in the following way: 

 𝐹𝑟=𝑗 =
𝛼𝜙,𝑗

𝛼𝜙
 

=
2log2(𝛼𝜙,𝑗)

2log2(𝛼𝜙)
 

= 2log2(𝛼𝜙,𝑗)−log2(𝛼𝜙) 

= 2log2(𝛼𝜙,𝑗)−log2(2𝑛) 

= 2log2(𝛼𝜙,𝑗)−𝑛. 

(3.31) 

 

 

 

4 Implemented in BuDDy BDD package [68]  
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The above solution does not scale to MSS – especially nonhomogeneous MSS. One of the 

reasons is that the denominator 𝛼𝜙 is a product (3.27) that cannot be simplified to single 

exponentiation and therefore cannot be further simplified using logarithm. The key to 

efficient calculation is to avoid the computation of the number of state vectors altogether. 

We propose a simple general algorithm that can be used to analyze nonhomogeneous MMS, 

and consequently homogeneous MSS and BSS. The algorithm follows the general structure 

of diagram manipulation (Alg. 3.6). Its pseudocode is presented in Alg. 3.7 and Alg. 3.8. 

The algorithm itself is a simplified version of the probabilistic algorithms described further 

in section 5.1. 

procedure STATEFREQUENCY(diagram, j) 

  root ← ROOT(diagram) 

  frequency ← STATEFREQUENCYSTEP(root, j) 

  return frequency 

end procedure 

Alg. 3.7 Entry point of the state-frequency algorithm 

procedure STATEFREQUENCYSTEP(node, j) 

  if ISTERMINAL(node) ∧ VALUE(node) = j then 

    return 1.0 

  end if 

  if ISTERMINAL(node) ∧ VALUE(node) ≠ j then 

    return 0.0 

  end if 

  if CONTAINS(memo, node) then 

    return LOOKUP(memo, node) 

  end if 

  frequency ← 0.0 

  i ← INDEX(node)  

  for k = 0 to mi do 

    son ← SON(node, k) 

    sonFrequency ← STATEFREQUENCYSTEP(son) 

    frequency ← frequency + sonFrequency ∗ (1 / mi) 

  end for 

  PUT(memo, node, frequency) 

  return frequency 

end procedure 

Alg. 3.8 Recursive step of the state-frequency algorithm 

Our algorithm is general and therefore there is no need to use the specialized version that 

utilizes satisfy-count-ln for BSS. Furthermore, our algorithm uses only addition and 

multiplication whereas the other one uses exponentiation and logarithms extensively. This 

suggests that our algorithm should perform better in the case of BDD. Nevertheless, an 

experimental comparison of the two algorithms is needed to confirm this assumption. 
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3.3.3 Probabilistic Analysis 

In section 1.5 we described probabilistic analysis as a more precise way to analyze a system 

since, in addition to the system topology, it also considers the reliability of its components. 

Therefore, the input of algorithms for the probabilistic analysis is the diagram representing 

the structure function and the component state probabilities (1.14). 

One of the fundamental tasks of probabilistic analysis is the calculation of system 

state probabilities. This task involves the evaluation of the probability that the structure 

function 𝜙(𝒙) evaluates to value 𝑗. System state probability is closely tied to system 

availability (1.19) and unavailability (1.20) – one can be computed in terms of the other. 

Calculation of various importance measures also involves the evaluation of the probability 

that a derivative of the structure function evaluates to 1. Hence, the fundamental algorithm 

for the probabilistic analysis is the algorithm that calculates the probability that a function 

represented by MDD evaluates to value 𝑗 given component state probabilities (1.14). 

The probability that MDD evaluates to value 𝑗 agrees with the so-called Node 

Traversing Probability (NTP) [48] of the terminal node representing value 𝑗. Before we 

proceed with the calculation of NTP, we first need to consider path probability. Recall that 

a path is an alternating sequence of internal nodes and edges that lead to a terminal node. 

For the calculation, let us view the path as a sequence of pairs (𝑖𝑙, 𝑘𝑙) where 𝑖𝑙 is the index 

of variable associated with 𝑙th internal node and 𝑘𝑙 is the edge we chose in the 𝑙th internal 

node. Assuming that the component state probabilities are independent we can calculate the 

path probability 𝜌 of path 𝓅 as [48]: 

 𝜌𝓅 = ∏ 𝑝𝑖,𝑘,
(𝑖,𝑘)∈𝓅

 (3.32) 

we calculate the NTP of a terminal node 𝑇𝑗 as the sum of path probabilities leading to 𝑇𝑗 as: 

 

NTP(𝑇𝑗) = ∑ 𝜌𝓅 .

𝒫𝑗

𝓅

 (3.33) 

Definition (3.32) shows that we can associate component state probabilities with edges in 

the MDD. We refer to such MDD as probabilistic MDD (Fig. 3.22). Considering the 

implementation of the MDD, it would not be efficient to store the probabilities directly in 

the edges – the same information would be stored multiple times. Therefore, the 

implementations typically store the probabilities in a matrix ℙ𝑛,𝑚. Nevertheless, the 

visualization of probabilistic MDD is good for understanding probabilistic calculations. 
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Fig. 3.22 Probabilistic decision diagram with component state probabilities attached to edges 

In section 3.3.2 we have shown that calculation involving enumeration of all possible paths 

is not effective. Thus, an efficient evaluation of NTP(𝑇𝑗) needs a more sophisticated 

approach. In section 5.1, we describe two principal approaches to the calculation along with 

their use cases and experimental comparison. 

Furthermore, so far in this section we only described the time-independent version 

of the probabilistic analysis. Therefore, in section 5.2, we discuss how to adjust existing 

algorithms for the time-independent analysis to use them with time-dependent probabilities. 

3.3.4 Logic Derivatives 

Logic derivative is an essential tool for the calculation of different reliability characteristics 

– mostly for the calculation of various importance measures as described in section 2.3. 

Therefore, the calculation of the logic derivative of the function represented by MDD is 

another fundamental task of reliability analysis. 

A straightforward approach to the calculation is to follow the definition of the 

derivative. However, different types of derivatives exist (introduced in section 2.2.2) – each 

with a slightly different definition. For the moment, let us consider the directional logic 

derivative (2.12). Alg. 3.9 contains pseudocode for the calculation of the derivative using 

diagram manipulation algorithms introduced in section 3.2.4. Notice that the code simply 

calls algorithms corresponding to operations used in the definition. The notation of the 

second argument of the TRANSFORM algorithm (= 𝑗) denotes a single-parameter function that 

returns true if the parameter is equal to 𝑗 and false otherwise. This is known as partial 

function application [88] – the original function being the two-parameter equals (=) 

function. Also, notice that we can merge the diagrams using logical conjunction ∧ since the 
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call to the transform algorithm ensures that both diagrams have Boolean-valued output. 

Fig. 3.24 shows a specific example of the calculation of the derivative using the algorithm 

Alg. 3.9. 

procedure DPLD(diagram, i, j, h, s, r) 

  before ← COFACTOR(diagram, i, s) 

  after ← COFACTOR(diagram, i, r) 

  before’ ← TRANSFORM(before, (= j)) 

  after’ ← TRANSFORM(after, (= h)) 

  result ← APPLY(before’, after’, ∧) 

  return result 

end procedure 

Alg. 3.9 Calculation of directional logic derivative 

Let us consider one more example using the same approach – the calculation of the integrated 

directional logic derivative of type II (2.19). The pseudocode for this calculation can be 

found in Alg. 3.10. Its structure is very similar to Alg. 3.9, the only difference is that it does 

not involve any transformation of the diagrams and that it uses the greater than > operator 

to merge the diagrams. 

procedure IDPLDTYPEII(diagram, i, s, r) 

  before ← COFACTOR(diagram, i, s) 

  after ← COFACTOR(diagram, i, r) 

  result ← APPLY(before, after, >) 

  return result 

end procedure 

Alg. 3.10 Calculation of integrated directional logic derivative of type II 

Fig. 3.23 Fig. 3.24 and show an example of the calculation of DPLD of type I using the 

approach described by Alg. 3.9. We could use a similar approach to calculate the other 

derivatives introduced in section 2.2.2. The derivatives can be used to evaluate various 

system characteristics such as MCVs [89] or IMs such as SI [41]. Furthermore, in 

conjunction with component state probabilities, we can evaluate more IMs such as BI [41] 

and use further transformations of the derivative to calculate FVI [43], [44]. Consequently, 

we can see that decision diagrams and logic derivatives provide a comprehensive framework 

for the reliability analysis of complex systems. 
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𝜙(𝒙) 𝜙(01, 𝒙) 𝜙(11, 𝒙) 

diagram before after 

Fig. 3.23 MDDs representing structure function and intermediate diagrams used in the calculation 

of directional logic derivative 

 

   

𝜙(01, 𝒙) = 0 𝜙(11, 𝒙) = 1 

𝜕𝜙(0 → 1)

𝜕𝑥1(0 → 1)
 

before’ after’ result 

Fig. 3.24 MDDs representing intermediate diagrams and resulting diagram representing the 

directional logic derivative 

We have presented a basic approach to the calculation of logic derivatives. As long as we 

have an MDD of reasonable size representing the structure function, the calculation of the 

derivative is also reasonably efficient. The most expensive step of the calculation is the call 

to the apply algorithm (refer to section 3.2.4). However, even with the two presented 

examples, we may have noticed that the calculation is almost identical. Hence, in section 4.5 

we present a single universal algorithm for the calculation of any derivative along with an 

experimental comparison with the basic approach. 
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3.4 MDD-Related Tasks Open for Investigation 

In section 3.3, we established the principal steps of the reliability analysis using decision 

diagrams. The steps can be summarized as follows: 

• construction of the structure function; 

• creation of decision diagrams; 

• adjustments and transformations of the diagrams; 

• evaluation of the diagrams; 

• and interpretation of the results. 

The listed problems involve several challenges in the context of analysis of complex 

systems. Consequently, we have identified multiple research problems that address the 

challenges. Some of the problems involve experimental comparison of existing algorithms 

in different use cases whilst others require an introduction of new algorithms or 

enhancements of existing algorithms. Specifically, we have identified the following research 

problems: 

• generating random decision diagrams representing structure functions – required 

for exhaustive experimental comparisons; 

• order of diagram merging and its influence on the speed of diagram creation 

(section 3.3.1); 

• different ways of representation of a structure function of a series-parallel system 

and their influence on the size of the diagram (section 3.3.1); 

• experimental comparison of our algorithm for the calculation of state frequency 

with alternative approaches for BDDs (section 3.3.2); 

• introduction of a new universal algorithm for the calculation of logic derivatives 

and experimental comparison with existing approaches (section 3.3.4); 

• experimental comparison of existing algorithms for the probabilistic evaluation 

of decision diagrams (section 3.3.3); 

• adjustment of existing algorithms for probabilistic evaluation of decision 

diagrams with time-dependent probabilities (section 3.3.3).
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4 Efficient Diagram Creation and Manipulation 

The structure function is an integral part of the reliability analysis process. Considering that 

complex systems consist of numerous components it is essential to represent them 

efficiently. In this thesis, we focus on decision diagrams, which have proven to be a suitable 

structure for the task [44], [81], [90]. However, even though the diagrams are efficient, their 

size can be considerably high for large systems. Therefore, it is important to develop 

algorithms and approaches that can speed up diagram creation and manipulation. 

4.1 Generating Random Diagrams 

Chapter 4 and Chapter 5 deal with efficient diagram manipulation, which involves 

a considerable number of experimental comparisons. A comparison should be done, ideally, 

on diagrams with different structures and sizes. Therefore, in this section, we describe the 

methods we use for the generation of random decision diagrams. 

4.1.1 Min-Max Expressions 

The first approach is based on SoP expressions, specifically, on their generalized form where 

the logical conjunction is generalized using the min function and logical disjunction using 

the max function. The reason for this choice of generalization is that it is commonly used in 

the description of series-parallel systems (section 1.3.1). Another reason is that it is easy to 

represent and generate such expressions. For example, let us consider the following 

expression: 

 𝑓(𝒙) = max(min(𝑥1, 𝑥2, 𝑥3), min(𝑥1, 𝑥3, 𝑥4), min(𝑥2, 𝑥3, 𝑥4)). (4.1) 

We can represent the expression conveniently using the following list of lists of integers: 

[[1,2,3], [1,3,4], [2,3,4]]. 

Furthermore, we can also generate such a list conveniently by generating random integers 

from the range [1,2, … , 𝑛) where 𝑛 is the number of variables. The algorithm for the 

generation has the following parameters: 

• number of terms – the number of nested lists; 

• size of a term – the number of variables in a single term; 

• 𝑛 – the number of variables; 

• type of the function: 

• Boolean, 
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• MVL – requires additional parameter 𝑚, 

• or integer – requires additional parameters 𝑚 and 𝑚𝑖 for 𝑖 = 1,2, … , 𝑛.  

Subsequent creation of a diagram from such an expression is straightforward. We start by 

creating a diagram representing each nested list using the min operation and then we proceed 

with the merge of the diagrams using the max operation. This process is also known as fold, 

which we describe in section 4.2.1.2. 

4.1.2 Series-Parallel Trees 

The min-max approach is suitable for generating general MDDs. The average size of the 

generated MDD can be influenced by adjusting values of the parameters e.g., the number of 

terms or size of a term. A possible drawback of the approach is that generated MDDs do not 

correspond to the structure function of specific system types. Therefore, the second approach 

that we use – which we call the series-parallel trees approach – aims to generate MDDs 

representing structure functions of series-parallel systems (section 1.3.2). 

To generate such MDD, we use the same process as with the min-max expression. 

We start by generating a description of the system, which we subsequently transform into 

MDD. The description that we chose for the series-parallel system is the Abstract Syntax 

Tree (AST), which we briefly described in section 2.4.1. As an example, let us consider the 

series-parallel system depicted in Fig. 1.4 and let us assume that we use the min and max 

functions to describe series and parallel connections respectively. In Fig. 4.1, we can see 

AST representing the system. 

 

Fig. 4.1 AST representing series-parallel system depicted in Fig. 1.4 

Creation of the diagram from an AST can be done in a simple post-order traversal of the 

tree. In terminal nodes of the tree, we create diagrams representing given variables, and in 

internal nodes, we merge diagrams created in the traversal of the sons using the apply 

algorithm with min or max operation. We also use a recursive procedure to generate the 
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AST itself. The procedure has a single parameter 𝑛 – the number of variables that the tree 

(subsystem) should contain. The terminating case of the recursion is when the value of the 

parameter is 1, in which case we create a diagram representing the variable with the next 

index from a sequence, which must be shared amongst all recursive calls. In the non-

terminating case, we: 

• split the number of variables 𝑛 in half (or in any other ratio), 

• randomly choose either min or max operation, 

• generate sons of the new node using a recursive call, 

• and finally return a new internal node. 

In Alg. 4.1 we can see a pseudocode of the above procedure. 

procedure GENERATERANDOMAST(n) 

  if n = 1 then 

    return NODE(NEXTINDEX()) 

  end if 

  op ← SELECTRANDOMELEMENT({min, max}) 

  leftSize ← n/2 

  rightSize ← n − leftSize 

  left ← GENERATERANDOMAST(leftSize) 

  right ← GENERATERANDOMAST(rightSize) 

  node ← NODE(op, left, right) 

  return node 

end procedure 

Alg. 4.1 Recursive procedure for the generation of random AST representing a series-parallel 

system 

4.2 Improvement of Dynamic Creation 

4.2.1 Order of Evaluation 

4.2.1.1 Left Fold and Tree Fold 

The creation of decision diagrams can be a complicated process that can be approached in 

several ways – some of which we describe in section 3.2.2. Each approach has its use case, 

but the dynamic creation using the apply algorithm plays a pivotal role. During the creation, 

we often encounter a situation when we need to merge several diagrams (sequence of 

diagrams) using an associative operation ⊕. A typical example of this situation is 

the creation of a diagram representing SoP expression or min-max expression since logical 

conjunction, logical disjunction, min, and max are associative all operations. As we 

described in section 4.1.1, to create a diagram for such an expression, we start by directly 
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creating diagrams representing products, and then we proceed to merge them using the sum 

operation. 

The associativity of the merging operation allows us to join diagrams in numerous 

ways, using different orders of evaluations, while still achieving the same result. It is 

interesting to consider two orders that we encounter in other areas such as functional 

programming [88]. The first intuitive order is called left fold since it simply merges the 

sequence of diagrams from left to right. In Fig. 4.2 we can see a tree illustrating the left fold 

order of evaluation where the ⊕ nodes represent the merger of diagrams using associative 

operation and the house-shaped nodes represent the initial sequence of diagrams. 

 

Fig. 4.2 Left fold order of evaluation 

The second order of evaluation is called tree fold and works in a slightly less intuitive yet 

elegant way. Compared to the left fold, which works sequentially, the tree fold operates 

hierarchically by incrementally merging pairs of neighboring diagrams until there is only 

one resulting diagram left. In Fig. 4.3 we can see the tree fold order of evaluation using the 

same notation as in Fig. 4.2. 
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Fig. 4.3 Tree fold order of evaluation 

Notice that the number of diagram mergers (the number of ⊕ nodes) is the same for both 

approaches. However, an interesting question is whether different orders of evaluation can 

influence the speed of diagram creation and whether we can identify properties of the 

diagrams that would allow us to pick favorable orders for a specific use case. 

4.2.1.2 Fold Comparison 

To investigate the influence of the order of evaluation we performed an experimental 

comparison of the two folds in the creation of BDDs representing SoP expressions. We used 

functions defined in PLA format [9], which is a compressed form of a truth table that can be 

easily read as a SoP expression and subsequently transformed into a decision diagram. 

4.2.1.2.1 Boolean Functions Representing Adders 

In the first experiment, we examined functions representing output bits of bit adders [91] 

measuring the time needed to create diagrams representing all outputs of the adder circuits. 

In Tab. 4.1, we can see the properties of the functions examined in the experiment. The 

number of terms sets the upper bound on the number of terms in the SoP that we merged to 

obtain the resulting diagram (some of the terms were skipped in the creation of some 

functions because the function did not depend on them). The number of functions agrees 

with the number of output bits of the adder and therefore with the number of diagrams 

created for the given file. Finally, in Tab. 4.2 we can see a summary of the results that we 

presented in the paper [92]. The results clearly show that for each file the tree fold approach 

was the more efficient in time required to create diagrams for each output function defined 

in the file. 
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Tab. 4.1 Properties of the functions used in the experiment 

File name Number of terms Number of variables Number of functions 

10-adder_col 10,191 21 11 

11-adder_col 20,427 23 12 

12-adder_col 40,911 25 13 

13-adder_col 81,867 27 14 

14-adder_col 163,783 29 15 

Tab. 4.2 Average time in milliseconds needed to create BDDs representing outputs of the adder 

File name Left fold [ms] Tree fold [ms] 

10-adder-col 163 71 

11-adder-col 477 180 

12-adder-col 1,828 448 

13-adder-col 5,342 1,084 

14-adder-col 16,579 2,753 

 

The PLA files from the benchmark that we used in the experiment stored the products (rows 

of the compressed truth table) in a specific configuration, which might influence the result 

of the experiments since it might not represent a general case. Due to that, we repeated the 

experiment but before diagram creation, we randomly shuffled the rows of the file. Tab. 4.3 

presents the results of the second version of the experiment. The first observation is that the 

total time needed for the diagram creation is considerably higher in both cases. Moreover, 

the second and more important observation is that the tree fold approach was significantly 

slower, which is the opposite of the results of the first experiment. 

Tab. 4.3 Average time in milliseconds needed to create BDDs representing outputs of the adder 

with randomly shuffled rows 

File name Left fold [ms] Tree fold [ms] 

10-adder_col 522 789 

11-adder_col 2,075 2,975 

12-adder_col 7,218 13,031 

13-adder_col 27,512 51,063 

14-adder_col 94,292 230,151 
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4.2.1.2.2 Various Boolean Functions 

The results that we obtained from the first experiment are restricted to the specific type of 

function representing bit adders. To obtain more general results we repeated the experiment 

using a different – more representative set of 39 functions from the IWLS’93 benchmark set 

[93]. Tab. 4.4 presents a summary of the results that we presented in the paper [94]. The 

value of 𝛿 in the first column of the table indicates the tolerance used to determine which 

version of the fold is considered faster. The fold strategy is considered faster if the ratio of 

the time needed to create the diagrams using tree fold (numerator) and left fold (denominator) 

is less than 1 − 𝛿. Obviously, with decreasing value of 𝛿 (with decreasing tolerance), the 

number of cases when the left fold was faster and when the tree fold was faster equalizes. 

The results show that in a more general set of functions, either of the two folds can be faster 

depending on the specific function. 

Tab. 4.4 Number of functions in the benchmark in which speed of left fold and tree fold-based 

merging are different with respect to value 𝛿 

𝜹 
Faster 

Left fold Tree fold 

0.10 3 10 

0.05 10 17 

0.01 17 19 

0.00 19 20 

 

Both experiments showed that the choice of the folding strategy can have a significant 

impact on the speed of diagram creation. Unfortunately, the results imply that neither one of 

the examined folding strategies is more efficient in general, though the first experiment 

implies that there exists a specific configuration that favors the tree fold approach. Therefore, 

in general, it is advantageous for decision diagram libraries to implement both folding 

strategies so that the user can test and choose the strategy that is more suitable for his use 

case. 

4.2.2 Extended Apply 

The extended apply algorithm that we introduced in section 3.2.3 provides a more 

convenient way of the creation of decision diagrams that represent 𝑑-ary operations. To 

examine the practical performance of the algorithm, we performed an experimental 

comparison [95] with the basic version of the apply algorithm. 
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In the experiment, we generated random ASTs of different sizes using an approach 

similar to the one described in section 4.1.2, with a difference that the generated trees were 

𝑑-way trees (each internal node has 𝑑 outgoing edges) with 𝑑 = 2,3,4,5. The size of the tree 

was given by the parameter 𝑛𝑚𝑎𝑥, which set the number of leaf nodes of the AST. Then, we 

transformed the AST into BDD using the extended apply algorithm as shown in Tab. 4.5. 

The experiments measured the average time in milliseconds (obtained from 1,000 

replications) required to transform randomly generated AST into BDD and the average 

required number of steps of the algorithm. The results of the comparison are presented in 

Tab. 4.6 and Tab. 4.7. 

Tab. 4.5 Usage of the extended apply algorithm with different arities in the creation of BDD from 

an AST (the last parameter is omitted for clarity) 

𝒅 Extended apply calls 

2 APPLY(APPLY(APPLY(APPLY(𝐷1, 𝐷2), 𝐷3), 𝐷4), 𝐷5 )  

3 APPLY(APPLY(𝐷1, 𝐷2, 𝐷3), 𝐷4, 𝐷5)  

4 APPLY(APPLY(𝐷1, 𝐷2, 𝐷3, 𝐷4), 𝐷5)  

5 APPLY(𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5)  

Tab. 4.6 The average time in milliseconds requires to create BDD from AST 

𝒏𝒎𝒂𝒙 
𝒅 

2 3 4 5 

20,000 79 78 94 113 

40,000 177 176 209 252 

60,000 280 278 333 401 

80,000 384 383 457 550 

100,000 500 495 592 712 

Tab. 4.7 The average number of steps of the extended apply algorithm 

𝒏𝒎𝒂𝒙 
𝒅 

2 3 4 5 

20,000 500,347 410,656 498,364 555,554 

40,000 1,055,979 864,883 1,053,838 1,172,272 

60,000 1,637,588 1,339,495 1,643,756 1,827,908 

80,000 2,227,090 1,818,588 2,232,094 2,479,476 

100,000 2,831,173 2,311,067 2,836,996 3,149,147 
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Overall, the results of our comparison show that the basic version of the apply algorithm 

performs better compared to the extended versions – and thus we do not achieve a significant 

speedup by using the extended algorithm. On the other hand, the version with arity 3 proved 

to be equally fast and more efficient in terms of the number of steps of the algorithm, which 

suggests that there may be use cases where the extended versions are more appropriate. 

Finally, we consider one of the important benefits of extended apply to be the convenience 

of using the algorithm when creating diagrams for functions that are 𝑑-ary in their nature. 

4.3 Representation of Series-parallel Systems 

Series-parallel systems are one of the system types that we consider complex when they 

consist of a high number of components. Their nature also allows us to efficiently generate 

systems with random topologies (section 4.1.2). Therefore, we chose this topology to 

compare different approaches to structure function representation. 

4.3.1 Comparison of Single and Series of Diagrams 

In the experimental examination presented in our paper [96], we generated a random 

series-parallel MSS and created a single and series of diagrams representing the structure 

function of the system. We compared the number of unique nodes needed to represent the 

structure function using both approaches. Tab. 4.8 presents a summary of the results, which 

clearly show that the series approach is more efficient considering the number of unique 

nodes. The number of nodes is one of the key properties of a decision diagram because it 

defines the complexity of many algorithms that operate on the diagrams [11]. Therefore, the 

possibility of representing series-parallel systems more compactly using the series of 

diagrams has a positive impact on our ability to analyze complex series-parallel systems. 

Tab. 4.8 Average number of nodes in a single MDD and in a series of MDDs depending on the 

number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5 state MSS 

𝑛 
Single MDD Series of MDDs 

3 4 5 3 4 5 

500 1,995 5,138 10,756 1,002 1,502 2,002 

1,000 4,232 11,436 24,926 2,002 3,002 4,002 

1,500 6,562 18,210 40,591 3,002 4,502 6,002 

2,000 8,959 25,346 57,424 4,002 6,002 8,002 

2,500 11,406 32,749 75,128 5,002 7,502 10,002 
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4.3.2 Influence of the Order of Variables 

One of the limitations of the presented experiment is that we only considered a single order 

of variables in the diagram – the default order of variables. However, as we showed in 

section 3.1.5, the order of variables can significantly influence the number of nodes. Thus, 

to examine whether the series approach is more efficient even with an arbitrary order of 

variables we performed a second experiment. The new experiment had a similar setup as the 

previous experiment but in addition to generating a random topology of the system, we 

generated and used random order of variables. Also, since some order of variables can result 

in an impractical number of nodes, we significantly reduce the number of components of the 

generated system. In table Tab. 4.9 we can see the results of the new experiment presented 

in our paper [97]. We can see that despite a significantly lower number of components the 

number of nodes in the diagrams (especially single diagrams) is considerably higher. This 

suggests that the default order of variables that we used in the first experiment is a reasonable 

and efficient choice for series-parallel systems. Most importantly, the data show that the 

series approach is more efficient even in situations when we use a random order of variables. 

Tab. 4.9 Average number of nodes in a single MDD and in a series of MDDs depending on the 

number of system components (𝑛) in case of homogeneous series-parallel 3, 4, and 5 state MSS 

𝑛 
Single MDD Series of MDDs 

3 4 5 3 4 5 

10 61 134 268 40 58 78 

20 797 3,495 11,782 227 335 440 

30 9,381 84,858 545,158 1,096 1,620 2,194 

 

The results of the experiments offer two interesting conclusions. The first conclusion is that 

the individual description of systems states of MSS is considerably more effective than the 

description of the entire system. The second conclusion is that the default order of variables 

is a reasonable choice for decision diagrams representing structure functions of series-

parallel systems. 

4.4 System State Frequency Evaluation 

The calculation of system state frequency involves multiple challenges that we need to deal 

with for it to be efficient. We identified three principal approaches to the calculation, which 

we discussed in detail in section 3.3.2. At the end of the section, we presented a general 
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algorithm (Alg. 3.7) for the calculation that can be used for BSS as well as MSS. However, 

in the case of BSS, there exists an alternative approach that utilizes logarithms to avoid 

integer overflow. We assume that our general algorithm should perform better. To confirm 

the assumption, we compared the three approaches experimentally. 

In the experiment, we generated 200 random BDDs using the min-max approach 

(section 4.1.1) for different numbers of variables (𝑛). Subsequently, we computed the system 

state frequency using all three approaches. In Tab. 4.10, we can see the average time in 

microseconds required to calculate the state frequency using the three approaches. Notice 

that we used the GMP multiple precision arithmetic library. 

Tab. 4.10 Average time in microseconds required to calculate the state frequency using different 

approaches 

𝒏 Satisfy-count [μs] Satisfy-count-ln [μs] Our [μs] 

10 12 14 10 

30 1,387 1,823 1,337 

60 59,157 69,047 57,107 

80 a 471,942 191,991 161,950 

90 a 788,309 329,563 287,166 

100 a 1,057,991 470,303 407,762 
a Using the GMP integers 

 

The results of the experiment confirmed our assumption that our algorithm performs better 

than the approach that utilizes logarithms. It also confirmed our assumption that even though 

it is possible to use the basic approach based on the satisfy-count algorithm – which performs 

comparably for 𝑛 < 63 – the calculations involving multiple precision integers are 

considerably slower. Therefore, we conclude that it is better to use our algorithm even for 

the special case of BSS. 

4.5 Efficient Calculation of Logic Derivatives 

4.5.1 Parametrized Procedure 

Calculation of logic derivatives is an important step of the reliability analysis process. In 

section 3.3.4 we described a possible approach to the calculation that utilizes general 

diagram manipulation algorithms and can be used to calculate all types of derivatives. 

However, one of the drawbacks of the presented approach is that it requires a separate 
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procedure for each type of derivative. As an example, we presented such procedures in 

Alg. 3.9 and Alg. 3.10. 

The first step in the improvement of the approach is the observation that the examples 

– and procedures for the calculation of other types of derivatives as well – have almost 

identical structures and, therefore, can be parameterized. Thus, the task is to identify the 

parameters. Except for the IDPLD of type II, the derivatives differ only in the transformation 

that they use on the cofactors. Hence, the first pair of parameters are two transformation 

functions – 𝛾𝑙𝑒𝑓𝑡 and 𝛾𝑟𝑖𝑔ℎ𝑡. Type II is the only one that uses other operations than ∧ in the 

final apply call. Therefore, the operation also needs to be a parameter.  Finally, let us notice 

that the change in the value of the variable does not require parametrization since it is the 

same for all types of considered derivatives. Considering all the parameters, we present the 

pseudocode of the parametrized procedure in Alg. 4.2. 

procedure PARAMETRIZEDDPLD(diagram, s, r, γleft, γleft, ⊙) 

  before ← COFACTOR(diagram, i, s) 

  after ← COFACTOR(diagram, i, r) 

  before’ ← TRANSFORM(before, γleft) 

  after’ ← TRANSFORM(after, γright) 

  result ← APPLY(before’, after’, ⊙) 

  return result 

end procedure 

Alg. 4.2 Parametrized procedure for the calculation of any (I)DPLD 

The algorithm presented in Alg. 4.2 can be used to calculate all types of derivatives by 

providing appropriate values of the parameters. In table Tab. 4.11 we present parameters for 

the calculation of all derivative types described in section 2.2.2. The notation (= 𝑗) follows 

the syntax of partial function application [88] used in some programming languages. The 

presented example (= 𝑗) denotes an anonymous unary function that returns true if and only 

if its argument equals the value 𝑗. In the special case of IDPLD of type II we use the identity 

function that returns its argument unchanged. 

Tab. 4.11 Parameters of the parametrized procedure for the calculation of any (I)DPLD 

Derivative 
Left transform 

(𝜸𝒍𝒆𝒇𝒕) 

Right transform 

(𝜸𝒓𝒊𝒈𝒉𝒕) 
Apply operation 

(⊙) 

DPLD (= 𝑗)  (= ℎ)  (∧)  

IDPLD Type I (= 𝑗), (< 𝑗)  (< 𝑗), (= 𝑗)  (∧)  

IDPLD Type II λ𝑎. 𝑎 a λ𝑎. 𝑎 a (<), (>)  

IDPLD Type III (< 𝑗), (≥ 𝑗)  (≥ 𝑗), (< 𝑗)  (∧)  
b The identity function 
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4.5.2 Specialized (I)DPLD Calculation Algorithm 

4.5.2.1 Introduction of the Algorithm 

The procedure presented in Alg. 4.2 is reasonably efficient – the most expensive step is the 

final apply call. Therefore, if we can represent the structure function with a diagram of 

reasonable size, we can analyze it using logic derivatives. On the one hand, the advantage of 

the presented procedure is that it uses a general diagram manipulation algorithm and, thus, 

can be used with general diagram manipulation libraries. On the other hand, the calculation 

of the derivatives has certain specifics that the general approach cannot exploit. Therefore, 

we present an algorithm designed specifically for the calculation of logic derivatives. 

Let us consider the transformed cofactors that enter the final apply call. The two 

diagrams originate from the same diagram and, therefore, their structure is quite similar. 

Moreover, we know exactly how they differ – the difference is only in the edge we used to 

“skip” a node representing the variable 𝑥𝑖. This allows us to avoid “materializing” the 

intermediate results (the cofactors). Instead, we can use only a view of the original diagram, 

which uses a modified version of son access – the function GETSON presented in Alg. 4.3. 

Consequently, we can skip the calculation of the cofactors and instead use the views (with 

appropriate parameters) as the input of the apply call. 

Another intermediate result that we would like to avoid is the calculation of the 

transformed diagrams. Fortunately, we can use the same approach with a view of the 

diagram as we did in the case of the cofactor. If we ignore type II, we notice that the role of 

the transformations is to transform the cofactors into pseudo-logic functions so they can be 

merged using apply with ∧ operation. Therefore, the solution is to use a custom operation 

for the apply call – let us denote it using the letter Λ. The operation is a function of two 

parameters of the form (3.12). The functions aim to first transform the parameters and then 

return true if the values describe the desired change and false otherwise. The Λ operation 

allows us to define the derivative in the following universal way: 

 𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, if Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙))

0, otherwise.
 (4.2) 

Furthermore, from the practical point of view, it is even better if the Λ operation encodes the 

values {true, false} with integers {1,0}. This allows us to write the definition without the if 

condition in the following form: 
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 𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙)). (4.3) 

By combining the above-described ideas, we derived a universal algorithm for the 

calculation of arbitrary (I)DPLD within a single “apply-like” algorithm (without 

intermediate results). The algorithm uses an auxiliary function GETSON (Alg. 4.3) to access 

the son of a node. This function performs the “cofactoring” by skipping nodes representing 

the “derived by” variable.  

procedure GETSON(node, k, i, value) 

  son ← SON(node, k) 

  if ISINTERNAL(son) ∧ INDEX(son) = i then 

    return SON(son, value) 

  else 

    return son 

  end if 

end procedure 

Alg. 4.3 Helper function used in the step of the universal DPLD algorithm 

The entry point of the algorithm is presented in Alg. 4.4. It handles the special case when we 

derive by the variable that is in the root of the diagram and, mainly, it calls the recursive step 

of the algorithm. The recursive step has a structure similar to the step of the apply algorithm. 

Its pseudocode is presented in Alg. A.5. 

Finally, to be able to use the new algorithm, we need to define the Λ operation 

corresponding to all types of considered derivatives. In Tab. 4.12, we present the definitions 

for the calculation of all derivative types described in section 2.2.2 in the notation of lambda 

calculus. The first part of each expression 𝜆𝑎. 𝜆𝑏. defines two parameters of the function 

named 𝑎 and 𝑏. The expression following the last dot defines the value of the function for 

given values of parameters. 

procedure UNIVERSALDPLD(diagram, i, s, r, Λ) 

  oldRoot ← ROOT(diagram) 

  if ISINTERNAL(oldRoot) ∧ INDEX(oldRoot) = i then 

    left ← SON(oldRoot, s) 

    right ← SON(oldRoot, r) 

  else 

    left ← oldRoot 

    right ← oldRoot 

  end if 

  newRoot ← UNIVERSALDPLDSTEP(i, s, r, Λ, left, right) 

  return MDD(newRoot) 

end procedure 

Alg. 4.4 Entry point of the universal DPLD algorithm 
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procedure UNIVERSALDPLDSTEP(i, s, r, Λ, left, right) 

  if CONTAINS(memo, (left, right)) then 

    return LOOKUP(memo, (left, right)) 

  end if 

  if ISTERMINAL(left) ∧ ISTERMINAL(right) then 

    node ← MAKETERMINALNODE(Λ(VALUE(left), Value(right))) 

  else 

    ileft ← INDEX(left) 

    iright ← INDEX(right) 

    inew ← min(ileft, iright) 

    sons ← MAKETUPLE(minew) 

    for k = 0 to minew do 

      if ileft = inew then 

        lhs ← GETSON(left, k, i, s) 

      else 

        lhs ← left 

      end if 

      if iright = inew then 

        rhs ← GETSON(left, k, i, r) 

      else 

        rhs ← right 

      end if 

      sons[k] ← UNIVERSALDPLDSTEP(i, s, r, Λ, lhs, rhs) 

    end for 

    node ← CREATEINTERNALNODE(inew, sons) 

  end if 

  PUT(memo, (left, right), node) 

  return node 

end procedure 

Alg. 4.5 Recursive step of the universal DPLD algorithm 

Notice that the variables 𝑗 and ℎ are not parameters of the Λ function – they need to be 

defined outside of the function and made available during the evaluation of the expression. 

Modern programming languages support this behavior in the form of lambda function 

variable captures, closures, function objects with member variables, or similar constructs. 

Tab. 4.12 Functions used as the Λ parameter of our universal algorithm for the calculation of 

(I)DPLDs 

Derivative 𝚲-operation 

DPLD 𝜆𝑎. 𝜆𝑏. (𝑎 = 𝑗) ∧ (𝑏 = ℎ)  

IDPLD Type I 𝜆𝑎. 𝜆𝑏. (𝑎 = 𝑗) ∧ (𝑏 < 𝑗)  

IDPLD Type II 𝜆𝑎. 𝜆𝑏. (𝑎 < 𝑏)   

IDPLD Type III 𝜆𝑎. 𝜆𝑏. (𝑎 ≥ 𝑗) ∧ (𝑏 < 𝑗)  
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4.5.2.2 Experimental Comparison 

Our algorithm performs the entire calculation within a single “apply-like” operation in 

contrast with the parametrized procedure (Alg. 4.2), which involves multiple diagrams 

traversing operations. Therefore, we assume that our algorithm should perform better when 

we consider the speed of the derivative calculation. The question is whether the assumption 

holds and if so, how big of a speedup our algorithm offers. The answer to the question should 

suggest whether it is worth implementing the new algorithm or whether using the simpler 

parametrized procedure provides comparable performance. 

To answer the question, we compared the parametrized procedure and our approach 

presented in [98]. In the experiment, we generated random MDDs using the min-max 

approach (section 4.1.1) and measured the average time required to calculate IDPLD of 

type II and IDPLD of type III. We chose these two types because we assumed that the 

calculation times of other types are similar to those of type III. The average times for the 

different numbers of system states (𝑚), number of variables (𝑛) are presented in Tab. 4.13 

and Tab. 4.14 with the relative performance (last column) of our algorithm. 

Tab. 4.13 Average time in milliseconds required to compute IDPLD of type II for each variable 

using the parametrized procedure and using our algorithm 

𝒎 𝒏 Node count 

Parametrized 

procedure 

[ms] 

Our 

algorithm 

[ms] 

Our / 

Parametrized 

2 32 129,448  2,069  1,533  0.7410 

3 23 567,533  5,253  3,182  0.6058 

4 20 1,641,815  16,399  9,740  0.5939 

5 17 1,431,409  11,680  6,866  0.5879 

Tab. 4.14 Average time in milliseconds required to compute IDPLD of type III for each variable 

using the parametrized procedure and using our algorithm 

𝒎 𝒏 Node count 

Parametrized 

procedure 

[ms] 

Our 

algorithm 

[ms] 

Our / 

Parametrized 

2 32 128,322  3,570  1,538  0.43079 

3 23 531,698  6,005  2,978  0.49597 

4 20 1,591,344  18,540  9,625  0.51917 

5 17 1,401,163  13,208  6,874  0.52042 
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The experimental comparison shows that our algorithm is roughly 50% faster than the 

general parametrized approach. Since the calculation of logic derivatives is one of the 

essential steps of reliability and importance analysis, our algorithm can provide a significant 

speedup to the process of complex system analysis.
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5 Probabilistic Evaluation of Decision Diagrams 

In section 3.3.3 we introduced the calculation of node traversing probability as an essential 

task of probabilistic system reliability analysis. Also, we presented practical challenges that 

arise in the computation. In this section, we address the challenges, starting with the 

description of algorithms for efficient NTP calculation and continuing with the description 

of the impact of time-dependent component state probabilities. 

5.1 Calculation of Node Traversing Probabilities 

Calculation of the NTP of a terminal node following the definition (3.33) would involve 

enumeration of all paths leading to a given node, which is computationally infeasible – as 

we established in section 3.3.2. Just like with the computation of the state 

frequency, computationally feasible algorithms use only a single traversal of the diagram. 

The literature recognizes two principal approaches, which are the bottom-up approach and 

the top-down approach. 

5.1.1 Bottom-Up Approach 

The bottom-up approach [10] is the simpler one of the two approaches. It calculates the sum 

of NTPs of selected terminal nodes by calculating the probability Prob(. ) for each node 

using the following relation for internal node 𝐴: 

 

Prob(𝒱, 𝐴) = ∑ Prob(𝒱, 𝐴𝑘) ∗ 𝑝𝑖𝐴,𝑘

𝑚𝑖𝐴
−1

𝑘=0

, (5.1) 

and for terminal node 𝐵 as: 

 
Prob(𝒱, 𝐵) = {

1.0, VALUE(𝐵) ∈ 𝒱
0.0, otherwise

, (5.2) 

where 𝒱 is the set of values of selected terminal nodes. The sum of NTPs of all nodes 

representing values in 𝒱 can be subsequently obtained using the following relation: 

 ∑ NTP(𝐵)

𝐵∈𝒱

= Prob(𝒱, 𝑟𝑜𝑜𝑡). (5.3) 

The recursive nature of the relation (5.1) directly translates to the recursive algorithm 

presented in Alg. A.7. A crucial aspect of the algorithm is that it visits each node just once 

– which is achieved using the memoization technique (section 3.2.4). Let us note that to 
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calculate the Prob(𝒱, 𝐴), we first need to calculate Prob(𝒱, 𝐴𝑘) for 𝑘 = 0,1, … , 𝑚𝑖𝐴
− 1. 

This approach resembles the standard post-order traversal of a tree structure. Hence, we also 

refer to the algorithm as a post-order NTP calculation algorithm. 

5.1.2 Top-Down Approach 

The second approach is known in the literature as the top-down approach [99]. It calculates 

the NTP of each node using the following relation: 

 NTP(𝐴) = ∑ NTP(𝐵) ∗ 𝑝𝑖𝐵,𝑘

(𝐵,𝑘) ∈ ℰ(𝐴)

, (5.4) 

where ℰ(𝐴) is a set of pairs of the form (𝑘, 𝐵), which represents the set of all edges leading 

to node 𝐴 – 𝐵 being the source node and 𝑘 denoting that 𝐴 is 𝑘th son of node 𝐵. The relation 

has the following special case for the root node: 

 NTP(𝑟𝑜𝑜𝑡) = 1.0. (5.5) 

Let us notice that the relations (5.2) and (5.4) are similar. The key difference is that in the 

case of the top-down approach (5.4), we first need to fully evaluate the probability in a node 

before we proceed with the evaluation of its sons – hence the name top-down approach. Also, 

let us notice the difference in the notation. In the top-down approach, we use the notation 

NTP(𝐴), since the probability calculated in node 𝐴 agrees with its NTP – this is one of the 

possible advantages of this approach. On the other hand, in the bottom-up approach, we 

denote the probability calculated in node 𝐴 using the notation Prob(. , 𝐴) since the 

probability does not agree with its NTP. 

In Alg. A.8 we can see the pseudocode of an algorithm implementing the top-down 

approach. This algorithm differs from other diagram-evaluating algorithms – it does not 

utilize recursion. The nature of the relation (5.4) requires that the diagram is processed using 

the breadth-first search (BFS) traversal, which is also known as level-order traversal in the 

context of tree-like structures. Hence, we also refer to the algorithm as a level-order NTP 

calculation algorithm. 

Implementation of the BFS traversal requires an auxiliary data structure. This 

structure stores the nodes to be processed and is initialized in a way that it contains the root 

of the diagram. Furthermore, the structure must ensure that we first process all nodes with 

index 𝑖 before we process any node with index 𝑖 + 1, for 𝑖 = 1,2, … , 𝑛 (assuming the default 

order of variables). Therefore, a suitable structure is a priority queue where the index of 

a variable associated with a node serves as the priority. Any implementation of the priority 
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queue can be used; however, the increasing nature of priorities allows us to use a monotonic 

priority queue [100]. Specifically, we use a straightforward implementation of the bucket 

queue in the pseudocode (the stacks variable). 

Furthermore, an additional constraint we need to consider is to ensure that each node 

is processed just once. For this purpose, we use the memoization – just like with recursive 

algorithms. Also, the resulting state of the memo table serves as the output of the algorithm. 

After the algorithm finishes, it contains pairs of the form (𝐴, NTP(𝐴)). 

5.1.3 Applications in Reliability Analysis 

The two presented algorithms serve as an essential tool for the probabilistic evaluation 

described in section 1.5.1. For example, let us consider the calculation of system 

availability (1.17) of a system described by a structure function represented by diagram 𝐷 

using the bottom-up approach: 

 𝐴≥𝑗 = CALCULATENTPPOSTSTEP(ROOT(𝐷), {𝑎 | 𝑗 ≤ 𝑎 < 𝑚}), (5.6) 

and the top-down approach. 

 𝑚𝑒𝑚𝑜 = CALCULATENTPLEVEL(𝐷) 

𝐴≥𝑗 = ∑ LOOKUP(𝑚𝑒𝑚𝑜, 𝑇𝑎)

𝑚−1

𝑎=𝑗

. 
(5.7) 

As another example, let us also consider the calculation of system state probability (1.19) 

using the bottom-up approach:  

 Pr{𝜙(𝒙) = 𝑗} = CALCULATENTPPOSTSTEP(ROOT(𝐷), {𝑗}), (5.8) 

and the top-down approach: 

 𝑚𝑒𝑚𝑜 = CALCULATENTPLEVEL(𝐷) 

Pr{𝜙(𝒙) = 𝑗} = LOOKUP(𝑚𝑒𝑚𝑜, 𝑇𝑗). 
(5.9) 

Both approaches allow us to calculate the sum of NTPs of terminal nodes as well as 

individual NTPs. The difference between the approaches is that the bottom-up approach 

outputs the sum directly whilst the top-down approach outputs individual NTPs (stored in 

the 𝑚𝑒𝑚𝑜) and the sum needs to be calculated additionally. This means that when we want 

to know individual NTPs, we need to run the bottom-up algorithm multiple times. The 

question is what the difference between the performance of the two approaches in different 

use cases is. 
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5.1.4 Experimental Comparison of the Approaches 

The description of the two approaches suggests that the bottom-up approach could be faster 

(since it is simpler) in situations where we are interested in the sum of NTPs of terminal 

nodes e.g., in the calculation of system availability whereas the top-down approach could be 

faster in situations where we need to calculate NTPs of individual terminal nodes e.g., in the 

calculation of system state probabilities. 

To verify the assumptions, we performed an experimental comparison of the two 

approaches presented in the paper [101]. In the experiment, we generated random diagrams 

using approaches described in section 4.1.1 and section 4.1.2 – properties of the generated 

diagrams can be found in Tab. 5.1. For each combination of the parameters, we generated 

1,000 random diagrams. The subsequent comparison aimed to compare the approaches in 

the following use cases: 

• calculation of all system state probabilities (Tab. 5.2); 

• calculation of system availability with respect to the state 𝑗 = 1 (Tab. 5.3). 

In addition, we also aimed to evaluate different implementations of the priority queue used 

in the top-down algorithm. Specifically, we considered the following implementations: 

• heap – de facto standard implementation in standard libraries of programming 

languages (top-down heap column) [102]; 

• bucket queue using an array list [103] of array lists to implement the buckets (top-

down array column); 

• bucket queue using an array list of linked lists to implement the buckets (top-

down linked column). 

The results for the calculation of system state probabilities are presented in Tab. 5.2. The 

relative performance of the two algorithms differs for different values of 𝑚. For 𝑚 = 3, we 

can see that the bottom-up algorithm performs better even though we needed to run it three 

times – one time for each 𝑗 = 0,1,2. On the other hand, for 𝑚 = 5 we can see that the top-

down algorithm performs better. The assumption is that it would also perform better for 

higher values of 𝑚 as well, since we only need to run it once regardless of the number of 

system states. Another notable observation is that the bucket queue implementations 

outperform general implementation (heap) and that the array list implementation of the 

buckets is faster in larger diagrams. 
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In the second comparison – the calculation of 𝐴≥1 – we considered only the cases 

where 𝑚 = 5 since the calculation of system availability involves only a single invocation 

of the algorithm with both approaches regardless of the number of states. Hence, we expected 

that the simpler bottom-up algorithm would perform better – as the results of the first 

comparison suggested. Results of the comparison are presented in Tab. 5.3. They confirmed 

our assumption that a single invocation of the bottom-up algorithm is notably faster than 

a single invocation top-down algorithm. Finally, the results also reinforce the observation 

that the implementation of the bucket queue that uses an array list for the representation of 

the buckets has the best performance. 

Tab. 5.1 Properties of diagrams generated for the experiment 

Generating 

algorithm 
𝒏 𝒎 

Average number 

of nodes 

Series-Parallel 50,000 3 280,365 

Series-Parallel 10,000 5 347,204 

Min-Max 40 3 13,528,106 

Min-Max 20 5 2,220,734 

Tab. 5.2 The average time in milliseconds required to calculate all system state probabilities 

𝒏 𝒎 Bottom-up 

Top-down 

heap 

[ms] 

Top-down 

array  

[ms] 

Top-down 

linked 

[ms] 

50,000  3 15  22  20  18  

10,000  5 58  47  30  32  

40  3 1,621  3,975  1,925  2,840  

20  5 573  647  330  430  

Tab. 5.3 The average time in milliseconds required to calculate system availability 𝐴≥1 

𝒏 𝒎 Bottom-up 

Top-down 

heap 

[ms] 

Top-down 

array 

[ms] 

Top-down 

linked 

[ms] 

10,000  5 13  39  26  28  

20  5 167  731  383  498  
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The results showed that both algorithms find applications in probabilistic analysis. As we 

assumed, the top-down algorithm is preferable in cases where we need to quantify NTPs in 

individual nodes. On the other hand, the simpler bottom-up algorithm is more advantageous 

in cases where we are only interested in the sum of NTPs. The results also showed that the 

top-down algorithm is a suitable use case for bucket-queue, which significantly outperforms 

the general implementation. 

5.2 Probabilistic Calculations with Time-dependent Probabilities 

Until now, in section 3.3.3 and section 5.1, we have only focused on the time-independent 

branch of probabilistic analysis. However, component state probabilities usually evolve in 

time and, therefore, it is necessary to consider this behavior in the probabilistic analysis to 

be able to describe and analyze systems more precisely. 

In this section, we describe probabilistic analysis techniques that account for the 

component state probabilities no longer being constant numbers but rather expressions 

depending on variable 𝑡 representing time. The expressions typically represent cumulative 

distribution functions of some probability distribution – such as exponential or Weibull [1] 

– that describe the probability that the component has failed (in the case of BDD) or that the 

component is in a state less than 𝑗 (in the case of MSS) at time 𝑡. Consequently, the input of 

the probabilistic calculation is a matrix ℙ𝑛,𝑚 of such expressions. We have identified two 

principal approaches to the calculation – the basic and the symbolic approaches. In the rest 

of this section, we proceed with the description and comparison of the two approaches. 

5.2.1 Basic Approach 

The basic approach is the simpler one of the two approaches. The first step carried out before 

the evaluation of the diagram is to first evaluate each element of ℙ𝑛,𝑚 in time 𝑡 transforming 

it into ℙ𝑡 – a simple matrix of floating-point numbers representing component state 

probabilities at time 𝑡. Then we proceed with the probabilistic calculations using the standard 

time-independent algorithms – either the bottom-up or top-down described in section 5.1. 

The basic approach requires no modification of the two algorithms and therefore can be used 

with existing tools. For example, the authors in [104] utilize this approach in the analysis of 

distributed generation power systems. However, a possible disadvantage of this approach is 

that it requires repeated evaluation of the diagram for each time point 𝑡. Alg. 5.1 illustrates 

usage of the basic approach in the evaluation of system availability at multiple time points. 
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function EVALUATEBASIC(diagram, j, timePoints, ℙ) 

  for ∀ t ∈ timePoints do 

    ℙt ←EVALUATEDISTRIBUTIONS(ℙ, t) 

    values ← {a | j ≤ a < m} 

    A≥j (t) ←CALCULATENTPPOSTSTEP(diagram, values, ℙt) 

  end for 

end function 

Alg. 5.1 Basic approach to the calculation of system availability in multiple time points 

5.2.2 Symbolic Approach 

5.2.2.1 Description of the Symbolic Approach 

The second approach utilizes symbolic expressions – hence the name symbolic approach. 

Various computer algebra systems such as Matlab, GNU Octave, or wxMaxima allow 

manipulation, evaluation, and analysis of expressions represented by trees. Fig. 5.1 shows 

a simple example of such a tree. Thus, the main idea of the symbolic approach is to perform 

the calculation on expressions rather than probabilities evaluated in time 𝑡. Therefore, the 

input matrix ℙ𝑛,𝑚 contains symbolic expressions representing component state probabilities 

dependent on a single variable 𝑡 representing time. 

 

Fig. 5.1 Expression tree representing an expression that describes the availability of a BSS 

Implementation of the symbolic approach requires a suitable representation of the expression 

trees. In our library, we chose GiNaC [105] – an open-source C++ library for (besides other 

use cases) the creation, manipulation, and evaluation of symbolic expressions. The input of 

our implementation is a matrix ℙ𝑛,𝑚 of GiNaC expressions. Since GiNaC overloads standard 

arithmetic operators the manipulation of the expressions is very convenient. We can even 

reuse the code for the algorithms Alg. A.7 or Alg. A.8 by using techniques of generic 

programming – specifically the template mechanism of the C++ language. 
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The key difference from the basic approach is that after the last step of NTP 

calculation (Alg. A.7 or Alg. A.8), the result is a function in the form of an expression 

describing the probability. This expression contains a single variable – symbol 𝑡 representing 

time. Now, to evaluate the probability at time 𝑡, we evaluate the expression for a given value 

of 𝑡. Thus, with the basic approach we evaluate BDD using the NTP calculation algorithm 

for each time point whereas with the symbolic approach, we run the NTP calculation 

algorithm only once, and then we evaluate the expression for each time point. Alg. 5.2 

illustrates the usage of the symbolic approach in the evaluation of system availability at 

multiple time points. 

function EVALUATESYMBOLIC(diagram, j, timePoints, ℙ) 

  exprTree ←CREATETREE(diagram, ℙ) 

  for ∀ t ∈ timePoints do 

    A≥j (t) ←EVALUATETREE(exprTree, t) 

  end for 

end function 

Alg. 5.2 Symbolic approach to the calculation of system availability in multiple time points 

An interesting question is which approach is better if we need to evaluate the probability at 

multiple time points. We provide an experimental comparison of the two approaches that 

investigates the relative performance difference in section 5.2.3. 

5.2.2.2 Symbolic Computation Example 

Let us consider a simple storage system analyzed in [106]. The system consists of two units 

connected in parallel. Each unit has two hard drives configured as RAID1 and RAID0 

respectively. We will consider the system as a BSS for simplicity, and we will calculate its 

reliability (1.27). The topology of the system can be seen in Fig. 5.2. The system has the 

following structure function: 

 𝜙(𝒙) = (𝑥1 ∨ 𝑥2) ∨ 𝑥3𝑥4. (5.10) 

Using the structure function, component reliabilities (1.24), and the inclusion-exclusion 

principle we can calculate the system reliability using the following formula: 

 𝑅(𝑡) = 𝑝1(𝑡) + 𝑝2(𝑡) + 𝑝3(𝑡)𝑝4(𝑡)

− 𝑝3(𝑡)𝑝4(𝑡)(𝑝1(𝑡) + 𝑝2(𝑡) + 𝑝3(𝑡)𝑝4(𝑡)). 
(5.11) 

By using the bottom-up algorithm, we obtain the following formula: 

 𝑅(𝑡) = 𝑞1(𝑡)(𝑝2(𝑡) + 𝑞2(𝑡)𝑝3(𝑡)𝑝4(𝑡)) + 𝑝1(𝑡), (5.12) 
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which, after substituting 1 − 𝑝𝑖(𝑡) for each 𝑞𝑖(𝑡), agrees with the formula (5.11). Let us 

assume the same exponential distributions of component reliabilities as authors in [11] – we 

can see the distributions in Tab. 5.4. If we substitute the distributions into expression (5.12) 

we can plot the system reliability function which we can see in Fig. 5.3. 

Tab. 5.4 Storage system component reliabilities 

Component Component reliability 𝒑
𝒊
(𝒕) 

1 𝑡 ∗ exp(25359−1)  

2 𝑡 ∗ exp(6246−1)  

3 𝑡 ∗ exp(4764−1)  

4 𝑡 ∗ exp(44360−1)  

 

Fig. 5.2 Reliability block diagram depicting topology of a simple storage system 

 

Fig. 5.3 Reliability function of the storage system with the topology depicted in Fig. 5.2 

Besides the difference in the approaches described in section 5.2.2.1, the symbolic approach 

offers more flexibility such as that it allows for easier interaction with computer algebra 

systems – we can serialize the expression and import it into some computer algebra system 

for further analysis. For example, we obtained the expression (5.12) by running the bottom-

up algorithm with a matrix containing symbols 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡). Furthermore, we obtained 

the chart in Fig. 5.3 by exporting the expression importing it into the R [107] system, and 

using the ggplot [108] library to create the chart. 
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5.2.3 Comparison of Symbolic and Basic Approaches 

We performed an experimental comparison of the basic approach and symbolic approach to 

determine which approach performs better in the evaluation of time-dependent system 

reliability at multiple time points. We performed three experiments using our TeDDy library 

which implements both approaches. 

5.2.3.1 Storage System Example 

The first comparison we performed was on the storage system presented in section 5.2.3.1. 

In the experiment, we evaluated system reliability using component reliabilities presented in 

Tab. 5.4 at 10; 100; 1,000; and 10,000 selected time points. Tab. 5.5 shows the result of the 

comparison. The durations in the table were obtained as average from 100 replications of the 

computation. Column Basic computation contains the total time in nanoseconds required to 

compute system reliability at the given number of time points. Column Symbolic init 

contains the time needed to create the expression tree and column Symbolic computation the 

total time in nanoseconds required to compute system reliability at the given number of time 

points. The results clearly show that the basic approach is in the orders of magnitude faster 

than the symbolic approach even when we need to evaluate a higher number of time points. 

Tab. 5.5 Comparison of the basic and symbolic approach in the computation of system reliability of 

a four-component storage system 

Time points 
Basic 

computation [ns] 

Symbolic 

init [ns] 

Symbolic 

computation 

10 956 9,252 267,071 

100 7,258 9,454 2,607,722 

1,000 69,447 9,949 25,945,398 

10,000 692,683 13,456 257,718,581 

 

5.2.3.2 Random Series-parallel Systems 

The second comparison aims to compare the two approaches in the analysis of series-parallel 

systems with different topologies. For this purpose, we generated random series-parallel 

systems with 10, 20, 30, and 40 components using the approach described in section 4.1.2. 

For each such system, we computed system reliability in 10 time points. Since the systems 

are randomly generated, we assume exponential distributions of component reliabilities with 

randomly generated rate parameters. Table. 3 contains the results of the comparison. The 
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durations in the table were obtained for each variable count 𝑛 as average from 10 randomly 

generated system topologies and 10 replications for each topology. In addition to the 

previously described columns the table also contains |BDD| and |Tree| columns which 

contain the average number of nodes in BDD and the expression trees respectively. 

The results confirm the results of the first experiment that the basic approach is 

significantly faster. Moreover, the results also indicate that the complexity of the expression 

tree increases dramatically with increasing number of variables. This suggests that the 

symbolic approach is not suitable for a system with a higher number of components while 

the basic approach seems to scale very well if the size of the BDD stays reasonable. 

Tab. 5.6 Comparison of the basic and symbolic approach in the computation of system reliability of 

randomly generated series-parallel systems 

𝒏 |BDD| |Tree| 
Basic computation 

[ns] 

Symbolic init 

[ns] 

Symbolic 

computation [ns] 

10 12 599 1,739 26,187 3,823,367 

20 22 15,218 3,606 51,791 101,280,004 

30 32 546,208 6,020 82,222 3,595,178,608 

40 42 11,494,828 7,401 103,151 72,100,562,769 

 

5.2.3.3 PLA Benchmark Circuits 

The two experiments that we described so far used series-parallel systems. Therefore, in the 

last experiment, we decided to analyze systems of different nature – PLA circuits from the 

IWLS’93 benchmark [93]. Reliability analysis of logic circuits is specific since the structure 

function contains variables representing inputs of the circuits as well as variables 

representing unreliable logic gates [14]. The analysis aims only at the variables representing 

the logic gates fixing the input variables for all possible inputs. Hence, the size of the BDD 

is relatively small despite a higher number of variables. In this experiment, we also assumed 

exponential distributions of component reliabilities. Just like in the first experiment, we 

evaluated system reliability at 10; 100; 1,000; and 10,000 time points. 

Tab. 5.7 presents the results of the experiment. Additionally the PLA file column 

contain the name of the benchmark, and the 𝑛 column contains the number of variables 

representing the logic gates – the number of variables in the analyzed BDD. The results show 

that, again, the basic approach performed better than the symbolic approach. However, the 

relative difference between the two approaches is much smaller. 
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Tab. 5.7 Comparison of the basic and symbolic approach in the computation of system reliability of 

PLA circuits 

PLA file 𝒏 Time points 
Basic 

computation [ns] 

Symbolic init 

[ns] 

Symbolic 

computation 

[ns] 

con1 11 10 1,905 986 36,352 

con1 11 100 18,002 1,078 357,491 

con1 11 1,000 178,788 1,275 3,566,846 

con1 11 10,000 1,791,139 2,017 35,643,194 

xor5 17 10 2,210 698 23,954 

xor5 17 100 21,317 763 237,646 

xor5 17 1,000 212,002 874 2,384,453 

xor5 17 10,000 2,120,591 1,391 23,797,647 

rd53 35 10 3,860 2,158 74,064 

rd53 35 100 37,498 2,338 731,114 

rd53 35 1,000 374,347 2,709 7,277,917 

rd53 35 10,000 3,736,264 4,274 72,870,141 

squar5 40 10 4,469 8,019 220,688 

squar5 40 100 43,178 8,306 2,189,516 

squar5 40 1,000 430,617 9,086 21,934,328 

squar5 40 10,000 4,297,874 14,722 218,934,519 

sqrt8 44 10 4,864 2,000 67,313 

sqrt8 44 100 47,538 2,220 661,964 

sqrt8 44 1,000 473,333 2,555 6,612,181 

sqrt8 44 10,000 4,760,873 4,303 66,284,840 

 

Each of the above-described experiments showed that the basic approach performs much 

better than the symbolic approach if we consider the speed of the evaluation of NTP. 

Although the results are specific to our implementation – our library TeDDy and GiNaC 

library for the manipulation of expressions – the relative difference between the two 

approaches is considerable and therefore is unlikely to change significantly for other 

implementations. However, the symbolic approach that we presented is still a valid and 

useful tool for time-dependent reliability analysis because of the mentioned possibilities to 

further manipulate and analyze the expression. 
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Conclusion 

This thesis dealt with the application of decision diagrams in the reliability analysis of 

complex systems. It provided a comprehensive overview of the steps of the reliability 

analysis process with a focus on the algorithms operating on decision diagrams representing 

structure functions. Several new algorithms were introduced, and various improvements and 

generalizations of existing algorithms were provided. The contributions of the thesis are the 

results of solving the following research problems: 

• analysis of existing approaches and algorithms utilized in the representation of 

the structure function by decision diagram and their subsequent analysis: 

✓ Chapter 1 introduced general approaches used in reliability analysis, 

✓ Chapter 2 described discrete functions as the mathematical 

foundation of the structure function (section 2.1) and means of their 

analysis (section 2.2) and representation (section 2.4); 

✓ finally, Chapter 3 dealt with decision diagrams and their applications 

in reliability analysis (section 3.3). 

• implementation of a performant and robust software library for the creation and 

manipulation of decision diagrams: 

✓ Chapter 3 presented essential aspects of a software library for the 

creation and manipulation of decision diagrams (section 3.2); 

✓ all the described algorithms and techniques are implemented in our 

open-source library TeDDy [75]. 

• evaluation, adjustment, and improvement of existing algorithms for the creation 

and manipulation of decision diagrams; 

✓ Chapter 4 provided an experimental comparison of different ways of 

the order of evaluation of the apply algorithm (section 4.2); 

✓ Chapter 4 evaluated the per-state representation of series-parallel 

systems (section 4.3); 

✓ Chapter 3 introduced an algorithm for the calculation of system state 

frequencies (section 3.3.2) and Chapter 4 showed that it is preferable 

also in the special case of BSS (section 4.4); 

• creation of new decision diagram algorithms and methods specialized for the use 

case of topological and probabilistic reliability analysis: 

https://d.docs.live.net/c26aba247439201f/phd/minimovka/Pokyny_pre_vypracovanie_ZP.docx#Záver
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✓ Chapter 3 presented a generalized version of the apply algorithm 

(section 3.2.3) for the dynamic creation of decision diagrams and 

Chapter 4 showed that the algorithm is suitable for practical use cases 

(section 4.2.2) 

✓ Chapter 4 introduced a new universal algorithm for the efficient 

calculation of arbitrary logic derivatives (section 4.5). 

In conclusion, the major contribution of this thesis is the description of the optimization of 

the creation and manipulation of decision diagrams for the reliability analysis of large 

complex systems. The description involves existing techniques and algorithms as well as 

new algorithms proposed in this thesis. Finally, a notable practical contribution is the open-

source software library specialized in reliability analysis with decision diagrams. 
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Resume 

1 Predmet výskumu 

Analýza spoľahlivosti je dôležitou súčasťou životného cyklu takmer všetkých systémov. Je 

dôležitá už vo fáze návrhu systémov, kedy nám pomáha zostrojiť systém tak, aby dokázal 

plniť požadovanú funkcionalitu dostatočne dlhý čas s požadovanou spoľahlivosťou. 

Nemenej dôležitá je aj pri plánovaní údržby systémov alebo pri identifikácii komponentov 

kritických pre fungovanie systému. 

Prvým krokom analýzy je identifikácia počtu stavov systému. Ďalším krokom je 

vytvorenie matematického popisu systému. V tejto práci sa zameriavame na popis systému 

tzv. štruktúrnou funkciou [2]. Štruktúrna funkcia priradí danému stavu komponentov stav 

systému – popisuje závislosť stavu systému na stave jeho komponentov. Vo všeobecnosti je 

štruktúrna funkcia diskrétnou funkciou. Jej konkrétna forma závisí od počtu stavov systému 

a od počtu stavov komponentov systému.  

Skúmaním vlastností štruktúrnej funkcie získavame informácie o vlastnostiach 

skúmaného systému. Jednou z vlastností, ktoré štruktúrna funkcia preberá je komplexnosť 

systému. Tá môže byť spôsobená napríklad veľkých počtom komponentov systému, rôznou 

povahou komponentov alebo komplikovanými vzťahmi medzi komponentami. Obzvlášť pri 

veľkom počte komponentov je preto potrebné štruktúrnu funkciu efektívne reprezentovať. 

Vhodná reprezentácia musí zvládnuť popísať aj rozsiahle systémy a musí tiež umožňovať 

efektívne spracovanie v počítači. 

Rozhodovací diagram [11], [12] je štruktúra, ktorá spĺňa obe uvedené vlastnosti. Ide 

o acyklický graf, ktorý bol navrhnutý na efektívnu reprezentáciu diskrétnych funkcií. 

Rozhodovacie diagramy sa vo všeobecnosti považujú za veľmi efektívny spôsob 

reprezentácie štruktúrnej funkcie. Povaha komplexných systémov a neustály nárast zložitosti 

však vytvárajú tlak na neustále zlepšovanie existujúcich techník a navrhovanie nových 

prístupov. Voľne dostupné softvérové nástroje v súčasnosti poskytujú algoritmy na 

všeobecnú prácu s rozhodovacími diagramami. Algoritmy na analýzu spoľahlivosti sú však 

často implementované iba pre konkrétny prípad použitia alebo nie sú voľne dostupné. 

 Hlavným cieľom tejto práce je preto optimalizácia aplikácie rozhodovacích 

diagramov pri analýze spoľahlivosti zložitých systémov, z čoho vyplývajú nasledujúce 

výskumné témy: 
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• analýza existujúcich prístupov a algoritmov využívaných pri reprezentácii 

štruktúrnej funkcie pomocou rozhodovacieho diagramu a pri následnej analýze; 

• implementácia výkonnej a robustnej softvérovej knižnice na tvorbu 

a manipuláciu s rozhodovacími diagramami zameranej na využitie diagramov 

v analýze spoľahlivosti; 

• návrh, úprava a zlepšenie existujúcich algoritmov na tvorbu a manipuláciu 

s rozhodovacími diagramami; 

• vytvorenie nových algoritmov a metód založených na využití rozhodovacích 

diagramov špecializovaných na analýzu spoľahlivosti. 

2 Analýza spoľahlivosti 

2.1 Počet stavov systému 

Pred začiatkom analýzy systému je potrebné identifikovať počet stavov systému. 

Najjednoduchší prístup je popisovať iba dva stavy systému – systém funguje a systém zlyhal 

– ktoré popisujeme číslami 1 a 0 v tomto poradí. Takto popísaný systém nazývame 

dvojstavový systém (BSS z angl. „Binary-State System“) [1], [2]. Pre systémy, ktoré sú zo 

svojej povahy dvojstavové je takýto prístup postačujúci. Príkladom takéhoto systému je 

logický obvod. Rovnako je vhodný aj pre systémy, v ktorých môže aj veľmi malé zhoršenie 

stavu spôsobiť škody na technike alebo ohroziť zdravie ľudí. V takomto prípade môže ísť 

napríklad o riadiaci systém elektrárne.  

Mnohé systémy však dokážu plniť svoju úlohu aj po zhoršení ich stavu. Príkladom 

môže byť transportná sieť, ktorá funguje s menšou prenosovou kapacitou. Takéto systémy 

nazývame viacstavové (MSS z angl. „Multi-State System“) [3]. Stavy takýchto systémov 

popisujeme číslami 0 pre stav, v ktorom systém nefunguje až po číslo 𝑚 − 1 pre stav, 

v ktorom systém funguje bez obmedzení, kde 𝑚 je celkový počet stavov. Pri tomto type 

systémov ďalej rozlišujeme homogénne systémy, v ktorých je počet stavov všetkých 

komponentov a počet stavov systému rovnaký a nehomogénne systémy, v ktorých môžu 

mať rôzne komponenty a celý systém rozdielny počet stavov. Táto vlastnosť je typická pre 

systémy zložené z komponentov rôznej povahy – napr. z technických zariadení a ľudí. 

Výhodou BSS je ich jednoduchosť a stým spojená jednoduchosť modelov, ktoré ich 

popisujú – či už z pohľadu veľkosti modelov alebo z pohľadu výpočtovej zložitosti 

algoritmov. Výhodou je tiež dostupnosť väčšieho množstva algoritmov a nástrojov. Na 

druhej strane, ich nevýhodou môže byť až prílišné zjednodušenie v prípade popisu systémov, 
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ktoré nie sú vo svojej povahe dvojstavové. V takomto prípade je pre získanie presnejších 

výsledkov potrebné popisovať takéto systémy ako viacstavové – avšak za cenu zložitejšieho 

modelu a väčšej výpočtovej zložitosti. 

2.2 Štruktúrna funkcia 

Štruktúrna funkcia je zobrazenie, ktoré každému stavu komponentov priradí prislúchajúci 

stav systému. Vo všeobecnosti ide o diskrétnu funkciu, ktorá má v prípade nehomogénneho 

MSS nasledovnú podobu [5]: 

 
𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚1 − 1} × … × {0,1, … , 𝑚𝑛 − 1}

→ {0,1, … , 𝑚 − 1}, 
{1} 

kde 𝑛 je počet komponentov systému, 𝑥𝑖 popisuje stav 𝑖-teho komponentu pre 𝑖 = 1,2, … , 𝑛; 

𝑚 je počet stavov systému, 𝑚𝑖 je počet stavov 𝑖-teho komponentu a 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) je 

stavový vektor, ktorý obsahuje stav všetkých komponentov. 

Definícia {1} popisuje najvšeobecnejší prípad a súhlasí s definíciou celočíselnej 

funkcie [10]. V špeciálnom prípade homogénneho MSS, kedy platí 𝑚𝑖 = 𝑚𝑗 = 𝑚 pre 𝑖, 𝑗 =

1,2, … , 𝑛, má nasledovnú, jednoduchšiu, podobu [5]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚 − 1}𝑛 → {0,1, … , 𝑚 − 1}, {2} 

ktorá je zhodná s definíciou viachodnotovej logickej funkcie [10]. Ak navyše platí, že 𝑚 =

2, štruktúrna funkcia popisuje BSS a má nasledovnú formu [2]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1}𝑛 → {0,1}, {3} 

ktorá je zhodná s definíciou booleovskej funkcie [8]. 

Z definícií {1}, {2} a {3} je zrejmé, že definícia {3} predstavuje najvšeobecnejší 

prípad a definície {1} a {2} predstavujú iba špeciálne prípady. V ďalšom popise budeme 

preto uvažovať štruktúrnu funkciu vo forme {3}. 

2.3 Logické derivácie 

Skúmaním vlastností štruktúrnej funkcie získavame informácie o systéme, ktorý popisuje. 

Logický diferenciálny počet [10], [109] – podobne ako klasický diferenciálny počet – 

umožňuje skúmať dynamické vlastnosti diskrétnych funkcií. Dôležitým nástrojom pre 

analýzu spoľahlivosti sú tzv. logické derivácie, ktoré popisujú, ako sa mení hodnota funkcie 

pri konkrétnej zmene hodnoty premennej. 

Základnou deriváciou je smerová logická derivácia celočíselnej funkcie 𝑓(𝒙) podľa 

premennej 𝑥𝑖, ktorú definujeme nasledovným spôsobom [10]: 
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𝜕𝑓(𝑗 → ℎ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑗 , 𝒙) = 𝑗 a 𝑓(𝑟𝑗 , 𝒙) = ℎ

0, inak,
 {4} 

kde 𝑠, 𝑟, 𝑗, ℎ ∈ {0,1, … , 𝑚 − 1}, 𝑠 ≠ 𝑟 a 𝑗 ≠ ℎ. Notácia 𝑓(𝑠𝑗 , 𝒙) predstavuje kofaktor funkcie 

𝑓 podľa premennej 𝑥𝑗 s hodnotou 𝑠. Kofaktor je funkcia 𝑛 − 1 premenných, ktorú získame 

zafixovaním hodnoty premennej 𝑥𝑗 na hodnotu 𝑠. Podobne je derivácia {4} funkcia 𝑛 − 1 

premenných, ktorá nadobúda hodnotu 1 iba v bodoch, v ktorých zmena hodnoty premennej 

𝑥𝑖 z hodnoty 𝑠 na hodnotu 𝑟 spôsobí zmenu hodnoty funkcie 𝑓 z hodnoty 𝑗 na hodnotu ℎ. 

Derivácia {4} popisuje jednu špecifickú zmenu hodnoty funkcie. Pri celočíselnej 

funkcii však existuje vzhľadom na prípustné hodnoty 𝑠, 𝑟, 𝑗, ℎ relatívne veľký počet 

konkrétnych derivácií, ktoré je možné vyhodnotiť. Keďže jednotlivé derivácie popisujú iba 

zlomok všetkých situácií, ich použitie by bolo pomerne nepraktické. Pre získanie 

obsiahlejšieho pohľadu na správanie funkcie preto používame integrované smerové logické 

derivácie [30]. Literatúra popisuje tri typy týchto derivácií a to: 

• typ I definovaný nasledovne: 

 
𝜕𝑓(𝑗 ↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) = 𝑗 a 𝑓(𝑠𝑖 , 𝒙) < 𝑗
0, inak,

 {5} 

• typ II definovaný nasledovne: 

 
𝜕𝑓(↘)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) >  𝑓(𝑟𝑖, 𝒙)

0, inak,
 {6} 

• a typ III definovaný nasledovne: 

 
𝜕𝑓(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
= {

1, ak 𝑓(𝑠𝑖, 𝒙) ≥ 𝑗 a 𝑓(𝑟𝑖, 𝒙) < 𝑗
0, inak.

 {7} 

Definície {5}, {6} a {7} sa v rámci jednotlivých typov môžu líšiť napr. smerom zmeny 

hodnoty funkcie. Povaha zmeny sa však pre konkrétny typ nemení. 

Zmena hodnoty premennej a následná zmena hodnoty štruktúrnej funkcie 

zodpovedajú zmene stavu komponentu a následnej zmene stavu systému. Logické derivácia 

preto predstavujú veľmi silný nástroj pre skúmanie vplyvu komponentov na stav systému. 

V nasledujúcich sekciách preto popíšeme využitie derivácií pri výpočte rôznych 

ukazovateľov spoľahlivosti. 
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2.4 Topologická analýza 

Štruktúrna funkcia popisuje topológiu systému, na základe ktorej dokážeme vykonať 

topologickú analýzu. Základným topologickým ukazovateľom je relatívna frekvencia stavov 

systému vzhľadom na stav 𝑗 definovaná nasledovne [110]: 

 𝐹𝑟≥𝑗 = TD(𝜙(𝒙) ≥ 𝑗), {8} 

kde 𝜙(𝒙) je štruktúrna funkcia, 𝑗 ∈ {0,1, … , 𝑚 − 1} a notácia TD(. ) označuje tzv. hustotu 

pravdivosti argumentu – relatívny počet vstupných vektorov, pre ktoré argument (funkcia 

s booleovským výstupom) nadobúda hodnotu 1. Frekvencia stavov systému tak popisuje 

relatívny počet možných stavov komponentov, pre ktoré je systém v stave 𝑗 alebo v stave 

lepšom ako 𝑗. Frekvenciu stavov systému môžeme použiť na jednoduché porovnanie dvoch 

rôznych konfigurácií systému napríklad vo fáze návrhu systému. 

Frekvencia stavov systému popisuje celý systém jedným číslom a nehovorí nič 

o vplyve jednotlivých komponentov systému. Takúto informáciu poskytuje jeden z tzv. 

ukazovateľov dôležitosti [7] zvaný štruktúrna dôležitosť. Štruktúrnu dôležitosť (SI z angl. 

„Structural Importance“) je možné definovať viacerými spôsobmi. Z pohľadu 

vyhodnocovania je veľmi výhodná definícia pomocou logickej derivácie [20]: 

 SI𝑖 = TD (
𝜕𝑓(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑟)
). {9} 

SI𝑖 popisuje relatívny počet situácií kedy zmena stavu 𝑖-teho komponentu zo stavu 𝑠 do stavu 

𝑟 spôsobí zmenu stavu systému popísanú deriváciou. V definícii {9} sme použili 

integrovanú smerovú logickú deriváciu typu III {7}. Pre výpočet SI je však možné použiť aj 

ostatné typy derivácií. Presný význam SI potom závisí od použitej derivácie. 

2.5 Pravdepodobnostná analýza 

Nevýhodou topologickej analýzy je, že predpokladá rovnakú pravdepodobnosť stavov 

komponentov. Stavy komponentov sa však v praxi vyskytujú s rôznymi 

pravdepodobnosťami. Pre získanie presnejších charakteristík systému je preto potrebné 

vziať do úvahy aj pravdepodobnosti stavov komponentov. Ďalšou dôležitou vlastnosťou je, 

že pravdepodobnosť stavov komponentov sa v čase mení. Preto rozlišuje časovo závislé 

a časovo nezávislé pravdepodobnostné charakteristiky. 

Časovo nezávislé pravdepodobnosti stavov komponentov označujeme nasledovne: 

 𝑝𝑖,𝑘 = Pr{𝑥𝑖 = 𝑘}, {10} 
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kde 𝑖 = 1,2, … , 𝑛 a 𝑘 = 0,1, … , 𝑚𝑖 − 1. Notácia {10} označuje pravdepodobnosť, že 

komponent 𝑖 je v stave 𝑘. Časovo závislé pravdepodobnosti stavov komponentov 

označujeme podobne: 

 𝑝𝑖,𝑠(𝑡) = Pr{𝑍𝑖(𝑡) = 𝑠}, {11} 

kde 𝑠 = 0,1, … 𝑚𝑖 − 1, premenná 𝑡 reprezentuje čas a funkcia 𝑍𝑖(𝑡) popisuje stav 𝑖-teho 

komponentu v čase 𝑡. 

Základnou pravdepodobnostnou charakteristikou systému je dostupnosť vzhľadom 

na stav systému j. Časovo nezávislú dostupnosť MSS definujeme nasledovne [3]: 

 𝐴≥𝑗(𝒑) = Pr{𝜙(𝒙) ≥ 𝑗}, {12} 

kde 𝑗 ∈ {1,2, … , 𝑚 − 1} a 𝒑 je matica pravdepodobností stavov komponentov. 

Dostupnosť {12} zodpovedá pravdepodobnosti, že systém je v stave 𝑗 alebo v lepšom stave. 

Komplementárnym ukazovateľom k dostupnosti je nedostupnosť systému vzhľadom na stav 

𝑗 definovaná nasledovne [3]: 

 𝑈≥𝑗(𝒑) = Pr{𝜙(𝒙) < 𝑗}, {13} 

ktorá zodpovedá pravdepodobnosti, že systém je v stave horšom ako 𝑗. 

Podobne ako frekvencia stavov systému {8} popisujú dostupnosť a nedostupnosť 

celého systému jednou pravdepodobnosťou. Keďže však môžu byť rôzne komponenty rôzne 

spoľahlivé, neponúkajú žiadnu informáciou o dôležitosti jednotlivých komponentov. Takúto 

informáciou poskytujú rôzne ukazovatele dôležitosti. Jedným z bežne používaných 

ukazovateľov je Birnbaumova dôležitosť (BI z angl. „Birnbaum importance“). Podobne ako 

pri SI {9} je z praktického hľadiska výhodná definícia pomocou logickej derivácie [20]: 

 BI𝑖,𝑠
≥ = Pr {

𝜕𝜙(ℎ≥𝑗 → ℎ<𝑗)

𝜕𝑥𝑖(𝑠 → 𝑠 − 1)
↔ 1}. {14} 

BI𝑖,𝑠
≥  udáva pravdepodobnosť, že zhoršenie stavu 𝑖-teho komponentu zo stavu 𝑠 to stavu 𝑠 −

1 spôsobí zmenu stavu systému popisovanú deriváciou. Notácia . ↔ 1 zodpovedá jav kedy 

ľavý argument nadobúda hodnotu 1. V definícii {14} sme použili integrovanú smerovú 

logickú deriváciu typu III {7}. Pre výpočet BI je však možné použiť aj ostatné typy derivácií. 

Presný význam BI potom závisí od použitej derivácie. 

Definície časovo závislých verzií vyššie popísaných pravdepodobnostných 

ukazovateľov sú podobné ich časovo nezávislým ekvivalentom. Zásadným rozdielom je 

však argument, ktorý už nie je jednoduchá matica pravdepodobností, ale je ním vektor 

stavových funkcií. 
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Časovo závislá dostupnosť systému vzhľadom na stav systému 𝑗 je definovaná 

nasledovne [3]: 

 𝐴≥𝑗(𝑡) = Pr{𝜙(𝒁(𝑡)) ≥ 𝑗}, {15} 

kde 𝒁(𝑡) = (𝑍1(𝑡), 𝑍2(𝑡), … , 𝑍𝑛(𝑡)) je vektor stavových funkcií jednotlivých 

komponentov. 

3 Rozhodovacie diagramy 

Pre zostrojenie a vyhodnotenie štruktúrnej funkcie je potrebné vybrať vhodný spôsob jej 

reprezentácie. Reprezentácia musí umožniť efektívne spracovanie v počítači a zároveň 

umožniť efektívne reprezentovať aj rozsiahlejšie funkcie popisujúce komplexné systémy. 

Rozhodovací diagram je grafová štruktúra navrhnutá na reprezentáciu diskrétnych funkcií, 

ktorá spĺňa obe uvedené vlastnosti. Binárny rozhodovací diagram [11] (BDD z angl. „Binary 

Decision Diagram“) je najjednoduchší typ rozhodovacieho diagramu navrhnutý na 

reprezentáciu booleovských funkcií. Jeho zovšeobecnením je viachodnotový rozhodovací 

diagram [12] (MDD z angl. „Multi-valued Decision Diagram“) navrhnutý na reprezentáciu 

viachodnotových logických funkcií {2} a celočíselných funkcií {1}. Vo zvyšku textu 

budeme uvažovať najvšeobecnejší prípad MDD, ktorý reprezentuje celočíselnú funkciu. 

3.1 Štruktúra diagramu 

MDD je orientovaný acyklický graf, ktorý sa skladá z vnútorných vrcholov, ktoré 

reprezentujú premenné a koncových vrcholov, ktoré reprezentujú hodnoty funkcie. Vrcholy 

diagramu sú uložené na úrovniach. Jedna úroveň obsahuje vnútorné vrcholy reprezentujúce 

rovnakú premennú, s výnimkou poslednej úrovne, ktorá obsahuje koncové vrcholy. 

Vnútorný vrchol reprezentujúci premennú 𝑥𝑖 má 𝑚𝑖 výstupných hrán, ktoré vedú do 

vrcholov na nižších úrovniach. Koncový vrchol nemá žiadne výstupné hrany a počet 

koncových vrcholov je najviac 𝑚. Ukážku všetkých štruktúry rôznych typov MDD môžeme 

vidieť na Obr. 1. 

3.2 Tvorba diagramov 

Kľúčovou vlastnosťou MDD je unikátnosť a zdieľanie vrcholov. Tieto vlastnosti sú 

prakticky zabezpečené udržiavaním tzv. tabuľky unikátnych vrcholov – pred vytvorením 

nového vrcholu sa najprv kontroluje, či už požadovaný vrchol neexistuje v tabuľke. 
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Základom vytvorenia MDD je tzv. priama tvorba – MDD reprezentujúci funkciu 

jednej premennej alebo konštantnú funkciu môžeme vytvoriť jednoducho bez potreby 

sofistikovanejšieho algoritmu. MDD reprezentujúci komplikovanejšie funkcie môžeme 

následne získať spájaním priamo vytvorených diagramov pomocou binárnych operácií (∧,∨

,⊕𝑚, min, max, …). Takýto prístup nazývame dynamická tvorba MDD. Na spájanie 

používame algoritmus apply [11], ktorého vstupom sú dva MDD a binárna operácia 

a výstupom je nový MDD, ktorý reprezentuje novú funkciu získanú spojením vstupných 

funkcií binárnou operáciou. Opakovaným použitím algoritmu apply tak môžeme vytvoriť 

MDD reprezentujúci ľubovoľnú funkciu. 

Pre úplnosť spomenieme ďalší možný prístup k tvorbe MDD zvaný statická tvorba, 

ktorá spočíva v transformácii pravdivostnej tabuľky na MDD [80]. Tento prístup je vhodný 

pre tvorbu menších MDD, ktoré môžu slúžiť ako vstup do procesu dynamickej tvorby. 

   

Obr. 1 Vľavo: BDD reprezentujúci booleovskú funkciu, uprostred: MDD reprezentujúci 

viachodnotovú logickú funkciu, vpravo: MDD reprezentujúci celočíselnú funkciu 

3.3 Zefektívnenie tvorby diagramov 

Vytvorenie MDD reprezentujúceho štruktúrnu funkciu je nutný krok k následnej analýze 

systému. V prípade komplexných systémov môže byť štruktúrna funkcia rozsiahla 

a komplikovaná, preto je potrebné vytvorenie diagramu vykonať čo najefektívnejšie. Časť 

práce sa preto venuje zefektívneniu a zjednodušeniu tohto procesu. 

3.3.1 Zovšeobecnenie spájania diagramov 

Algoritmus apply môžeme považovať za binárnu operáciu. Mnohé funkcie/podsystémy, 

ktoré chceme popisovať sú však 𝑑-árne (kde 𝑑 ∈ ℕ). Príkladom môže byť trojvstupové 

logické hradlo (hradlo AND na Obr. 2) alebo paralelný (pod)systém (Obr. 2). Bežne 
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používaným riešením je viacnásobné použitie binárneho algoritmu apply. V prípade 

logického obvodu na Obr. 2 by tak volanie apply mohlo vyzerať nasledovne: 

APPLY(APPLY(APPLY(𝑋1, 𝑋2,∧), 𝑋3,∧), 𝑋4,∨), 

kde zápis 𝑋𝑖 predstavuje MDD reprezentujúci funkciu jednej premennej 𝑥𝑖. Oveľa 

prirodzenejšie by však bolo volanie apply nasledovným spôsobom: 

APPLY(𝐀𝐩𝐩𝐥𝐲(𝑿𝟏, 𝑿𝟐, 𝑿𝟑,∧), 𝑋4,∨). 

Vo zvýraznenej časti výrazu môžeme vidieť pomyselnú ternárnu verziu apply. 

V práci sme preto navrhli zovšeobecnenú verziu algoritmu apply, ktorú sme 

pomenovali extended apply. Podobne ako základná verzia algoritmu je tento postavený na 

vzťahu, ktorý popisuje vnútorný vrchol diagramu pomocou Shannonovej expanzie [49]. 

Nami zovšeobecnený vzťah má nasledovnú podobu: 

 ⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝒙) = ∑ ({𝑥𝑖 ↔ 𝑘} ∗ (⊙𝑑 (𝑓1, 𝑓2, … , 𝑓𝑑)(𝑘𝑖, 𝒙)))

𝑚𝑖−1

𝑘=0

, {16} 

kde výraz {𝑥𝑖 ↔ 𝑘} predstavuje tzv. logický bikondicionál, ktorý nadobúda hodnotu 1 práve 

vtedy a len vtedy, ak premenná 𝑥𝑖 nadobúda hodnotu 𝑘 a ⊙𝑑 je 𝑑-árna asociatívna operácia. 

Členy súčtu sa dajú stotožniť s výstupnými hranami vnútorného vrcholu a celý výraz 

s vnútorným vrcholom MDD. 

 

x1

x2

x3  

Obr. 2 Príklady systémov, na popis ktorých je vhodnejšie použiť ternárne funkcie; vľavo 

jednoduchý logický obvod; vpravo paralelný systém s tromi komponentami 

Navrhnutý algoritmus sme experimentálne porovnali so základnou verziou [95]. 

V experimente sme vytvárali MDD reprezentujúce náhodné 𝑑-cestné stromy pomocou 

nášho algoritmu extended apply s rôznou aritou. Výsledky porovnania môžem vidieť 

v Tab. 1. 

Výsledky porovnania ukazujú, že základná verzia dosahuje lepšie výsledky v 

porovnaní s rozšírenými verziami – a teda použitím rozšíreného algoritmu nedosahujeme 

výrazné zrýchlenie. Na druhej strane, verzia s aritou 3 sa ukázala byť rovnako rýchla a 
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efektívnejšia z hľadiska počtu krokov algoritmu, čo naznačuje, že môžu existovať prípady 

použitia, v ktorých je rozšírená verzia vhodnejšia. 

Tab. 1 Priemerný čas v milisekundách potrebný na vytvorenie MDD z výrazového stromu 

popisujúceho sériovo-paralelný systém zložený z 𝑛𝑛𝑎𝑥 komponentov 

𝒏𝒎𝒂𝒙 
𝒅 

2 3 4 5 

20 000 79 78 94 113 

40 000 177 176 209 252 

60 000 280 278 333 401 

80 000 384 383 457 550 

100 000 500 495 592 712 

 

3.3.2 Poradie spájania diagramov 

Pri tvorbe diagramov je často potrebné spojiť rádovo desiatky až stovky MDD rovnakou 

operáciou ⊙. Jedno použitie algoritmu extenden apply pri takto vysokom počte MDD nie je 

vhodné kvôli veľkej výpočtovej náročnosti analyzovanej v texte práce. Riešením je preto 

viacnásobné použitie či už základnej alebo rozšírenej verzie apply. Kvôli asociativite 

operácie ⊙ je možné toto spojenie vykonať mnohými spôsobmi. V práci sme analyzovali 

prístup zvaný left-fold5, v ktorom diagramy spájame sekvenčne zľava doprava: 

(((𝐷1 ⊙ 𝐷2) ⊙ 𝐷3) ⊙ 𝐷4) ⊙ 𝐷5 

a prístup tree-fold, v ktorom diagramy spájame hierarchicky postupne po dvojiciach: 

((𝐷1 ⊙ 𝐷2) ⊙ (𝐷3 ⊙ 𝐷4)) ⊙ 𝐷5, 

kde notácia 𝐷𝑖 predstavuje počiatočný MDD. 

V práci sme skúmali, či a ako poradie spájania ovplyvňuje rýchlosť vytvorenia 

diagramu [111], [112]. V Tab. 2 môžeme vidieť výsledky jedného z experimentálnych 

porovnaní, v ktorom sme vytvárali BDD reprezentujúce binárne sčítačky popísané PLA 

súbormi [91]. 

Výsledky experimentu ukázali, že v konkrétnom prípade použitého benchmakru 

dokáže poradie spájania výrazne ovplyvniť rýchlosť vytvorenia výsledného diagramu. 

 

 

 

5 Názvy left-fold a tree-fold pochádzajú z programovacích jazykov, kde sa funkcie s danými menami 

používajú na spracovanie údajových štruktúr [88] 
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V tomto konkrétnom prípade sa prístup tree-fold (ktorý je menej intuitívny) ukázal ako 

výrazne rýchlejší. Je však dôležité spomenúť, že v ďalší experimentoch s inými dátami sa, 

naopak, prístup left-fold ukázal ako rýchlejší. Z výsledkov našich experimentov preto 

usudzujeme, že pre nástroje na prácu s diagramami je výhodné implementovať oba prístupy. 

Tab. 2 Priemerný čas v milisekundách potrebný na vytvorenie BDD reprezentujúcich výstupy 

binárnej sčítačky 

Počet bitov 

sčítačky 

Počet spájaných 

diagramov 
Left fold [ms] Tree fold [ms] 

10-adder-col 10 191 163 71 

11-adder-col 20 427 477 180 

12-adder-col 40 911 1 828 448 

13-adder-col 81 867 5 342 1 084 

14-adder-col 163 783 16 579 2 753 

4 Aplikácia rozhodovacích diagramov v analýze spoľahlivosti 

Výsledky, ktoré sme popísali v predchádzajúcej sekcii je možné aplikovať na tvorbu 

diagramov vo všeobecnosti. Práca je však zameraná na špecifické využitie diagramov 

v analýze spoľahlivosti. Vo zvyšku textu sa preto venujeme tejto problematike. 

4.1 Reprezentácia štruktúrnej funkcie 

Primárne a pre ďalšiu analýzu nevyhnutné využitie diagramov v analýze spoľahlivosti 

spočíva v reprezentácii štruktúrnej funkcie. Základný a intuitívny prístup spočíva 

v reprezentácii celej štruktúrnej funkcie 𝜙(𝒙) jedným MDD. V prípade MSS však existuje 

aj alternatívny prístup, kedy každý stav systému popíšeme individuálne funkciami 𝜙(𝒙) ≥

1, 𝜙(𝒙) ≥ 2, … 𝜙(𝒙) ≥ 𝑚 − 1 [86]. Vizuálne porovnanie týchto dvoch prístupov môžeme 

vidieť na Obr. 3. Nevýhodou tohto prístupu je potreba vytvorenia niekoľkých MDD 

namiesto jedného. Na druhej strane, výhodou môže byť zjednodušenie popisu jednotlivých 

stavov systému, keďže každý je popísaný samostatne. 
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Obr. 3 Štruktúrna funkcia 𝜙(𝒙) reprezentovaná jedným diagramom (vľavo) a sériou diagramov 

(vpravo) pozostávajúcej z funkcií 𝜙(𝒙) ≥ 1 a 𝜙(𝒙) ≥ 2 v tomto poradí (vpravo) 

Zaujímavou otázkou je tiež porovnanie veľkosti resp. celkového počtu vrcholov 

MDD potrebných na reprezentáciu systému pri použití daných prístupov. Na zodpovedanie 

tejto otázky sme vykonali experiment, v ktorom sme porovnávali oba prístupy pri 

reprezentácii náhodne generovaných sériovo-paralelných systémov – ktoré považujeme za 

komplexné pri veľkom počte komponentov, kedy je veľkosť reprezentácie obzvlášť dôležitá. 

Výsledky porovnania môžeme vidieť v Tab. 3. 

Tab. 3 Priemerný počet vrcholov v jednom MDD a v sérii MDD v závislosti od počtu 

komponentov systému (𝑛) v prípade homogénnych sériovo-paralelných 3, 4 a 5 stavových MSS 

𝑛 
Jeden MDD Séria MDD 

3 4 5 3 4 5 

500 1 995 5 138 10 756 1 002 1 502 2 002 

1 000 4 232 11 436 24 926 2 002 3 002 4 002 

1 500 6 562 18 210 40 591 3 002 4 502 6 002 

2 000 8 959 25 346 57 424 4 002 6 002 8 002 

2 500 11 406 32 749 75 128 5 002 7 502 10 002 

 

Výsledky experimentu jednoznačne ukázali, že v prípade sériovo-paralelných 

systémov je reprezentácia pomocou série diagramov výrazne výhodnejšia ako použitie 

jedného diagramu. Tento výsledok je konzistentný aj pre systémy rôznych veľkostí 

s rozdielnym počtom stavov. 
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4.2 Výpočet frekvencie stavov systému 

Frekvencia stavov systému {8} je jedna zo základných topologických charakteristík 

systému, ktorou dokážeme jednoducho porovnať systémy s rôznymi topológiami. Jej 

výpočet spočíva vo vyhodnotení jednoduchého zlomku: 

 𝐹𝑟≥𝑗 =
𝛼𝜙,𝑗

𝛼𝜙
, {17} 

kde 𝛼𝜙,𝑗 je počet stavových vektorov (situácií), kde je systém v stave ≥ 𝑗 a 𝛼𝜙 je celkový 

počet stavových vektorov. Na vyčíslenie čitateľa môžeme využiť exitujúci algoritmus 

satisfy-count [11] a menovateľ vypočítame jednoduchým súčinom ∏ 𝑚𝑖
𝑛
𝑖=1 . Praktický 

problém takéhoto výpočtu je, že aj keď je výsledok z intervalu [0,1], čitateľ a menovateľ 

zlomku sú často čísla, ktoré nie je možné reprezentovať 64-bitovými údajovými typmi. 

V prípade BSS je možné problém s limitovaným rozsahom údajových typov vyriešiť 

vypočítaním logaritmov čitateľa a menovateľa a jednoduchou úpravou vzťahu {17}, ktorý 

popisujeme v práci. Tento postup sa však nedá aplikovať vo všeobecnosti na MSS. V práci 

sme preto popísali špecializovanú verziu existujúceho algoritmu na výpočet 

pravdepodobností, ktorá nie je limitovaná rozsahom údajových typov. Otázkou zostávalo, či 

má zmysel aplikovať tento algoritmus aj na BSS alebo či je v tomto prípade postup 

využívajúci logaritmy rýchlejší. Na zodpovedanie otázky sme vykonali experimentálne 

porovnanie spomínaných prístupov vrátane základného na BDD reprezentujúcich náhodne 

generované systémy. Výsledky porovnania môžeme vidieť v Tab. 4. 

Tab. 4 Priemerný čas v mikrosekundách potrebný na výpočet frekvencie stavov systému pomocou 

rôznych prístupov 

𝒏 Satisfy-count [μs] 
Satisfy-count-log 

[μs] 
Náš algoritmus [μs] 

10 12 14 10 

30 1 387 1 823 1 337 

60 59 157 69 047 57 107 

80 6 471 942 191 991 161 950 

90 6 788 309 329 563 287 166 

100 6 1 057 991 470 303 407 762 

 

 

 

6 S použitím knižnice GMP [87] pre výpočty s neobmedzenou presnosťou 
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Výsledky experimentu ukázali, že náš algoritmus funguje lepšie ako prístup využívajúci 

logaritmy. Potvrdil aj náš predpoklad, že hoci je možné použiť základný prístup založený na 

algoritme satisfy-count – ktorý má porovnateľný výkon pre 𝑛 < 63 – výpočty zahŕňajúce 

celé čísla s neobmedzenou presnosťou sú podstatne pomalšie. Preto sme dospeli k záveru, 

že je lepšie použiť náš algoritmus aj pre špeciálny prípad BSS. 

4.3 Efektívny výpočet logických derivácií 

Logické derivácie sú veľmi užitočný nástroj pre výpočet mnohých ukazovateľov 

spoľahlivosti, ako napr. rôznych ukazovateľov dôležitosti [20] alebo napríklad minimálnych 

rezných vektorov [23]. Ich efektívny výpočet je preto pre proces analýzy komplexných 

systémov veľmi dôležitý. 

Deriváciu funkcie reprezentovanej MDD môžeme relatívne jednoducho vypočítať 

nasledovaním jej definície (napr. {7}) a s použitím existujúcich algoritmov na manipuláciu 

MDD konkrétne cofactor [11], transform a apply [11]. Tento prístup funguje pomerne 

dobre, avšak využitie všeobecných algoritmov nemôže naplno využiť špecifiká výpočtu 

derivácií. Jeho nevýhodou je tiež že, v základnej podobe nie je univerzálny – pre výpočet 

rôznych derivácií musíme uvedené algoritmy kombinovať iným spôsobom s rôznymi 

parametrami. 

V práci sme preto navrhli špecializovaný algoritmus na výpočet ľubovoľnej 

derivácie [98]. Náš algoritmus vychádza z nasledujúcej univerzálnej definície logickej 

derivácie: 

 
𝜕𝑓(Λ)

𝜕𝑥𝑖(𝑠 → 𝑟)
= Λ(𝑓(𝑠𝑖, 𝒙), 𝑓(𝑟𝑖, 𝒙)), {18} 

kde notácia Λ predstavuje funkciu, ktorá popisuje, či zmena funkcie daná jej argumentami 

predstavuje požadovanú zmenu – v tom prípade vráti hodnotu 1 – alebo nie a vráti 

hodnotu 0. Funkcia Λ je parametrom nášho algoritmu, ktorý tak môžeme použiť na výpočet 

ľubovoľnej logickej derivácie. 

Po technickej stránke náš algoritmus kombinuje algoritmy cofactor, transform 

a apply, ktoré sa v základom prístupe používajú samostatne, do jedného kroku. Na základe 

tejto vlastnosti sme predpokladali, že náš algoritmus by mal byť vo výpočet derivácií 

rýchlejší. Na kvantifikovanie rozdielu v rýchlosti sme preto vykonali experimentálne 

porovnanie základného prístupu a nášho algoritmu pri výpočte integrovanej derivácie 
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typu III {7} z MDD reprezentujúcich náhodne generované systémy. Výsledky porovnania 

môžeme vidieť v Tab. 5. 

Tab. 5 Priemerný čas v milisekundách potrebný na výpočet IDPLD typu III pre každú premennú 

pomocou základného postupu a pomocou nášho algoritmu 

𝒎 𝒏 
Počet 

vrcholov 

Základný 

prístup 

[ms] 

Náš 

algoritmus 

[ms] 

Náš 

algoritmus 

/ základný 

prístup 

2 32 128 322  3 570  1 538  0,43079 

3 23 531 698  6 005  2 978  0,49597 

4 20 1 591 344  18 540  9 625  0,51917 

5 17 1 401 163  13 208  6 874  0,52042 

 

Experimentálne porovnanie ukazuje, že náš algoritmus je približne o 50 % rýchlejší ako 

základný prístup. Keďže výpočet logických derivácií je jedným zo základných krokov 

analýzy spoľahlivosti a dôležitosti komponentov, náš algoritmus môže výrazne urýchliť 

proces analýzy komplexných systémov. 

4.4 Pravdepodobnostné vyhodnotenie diagramov 

Pravdepodobnostná analýza poskytuje v porovnaní s jednoduchou topologickou analýzou 

oveľa presnejší popis správania systému a vplyvu jednotlivých komponentov 

prostredníctvom ukazovateľov akými sú napr. dostupnosť systému {12} alebo Birnbaumova 

dôležitosť {14} a mnohých iných. Pri použití MDD na reprezentáciu štruktúrnej funkcie je 

pri vyhodnocovaní všetkých pravdepodobnostných ukazovateľov kľúčovou úlohou výpočet 

pravdepodobnosti navštívenia [48] koncového vrcholu MDD (NTP z angl. „Node 

Traversing Probability“). MDD je našťastie pre výpočet pravdepodobností veľmi výhodnou 

štruktúrou. Pravdepodobnosti stavov komponentov môžeme pomyselne stotožniť s hranami 

MDD, ako môžeme vidieť na Obr. 4. Výpočet pravdepodobností je následne záležitosťou 

vhodnej prehliadky diagramu a násobenia vhodných pravdepodobností. 

V literatúre existujú dva zásadné prístupy/algoritmy k výpočtu NTP zvané bottom-

up a top-town. Tieto dva prístupy sa líšia typom prehliadky, ktorú pri výpočte používajú. 

Preto ich v práci označujeme aj ako post-order a level-order algoritmy. Jedným z výsledkov 

prezentovaných v práci je porovnanie týchto prístupov pri výpočte rôznych 

pravdepodobnostných ukazovateľov. Výsledky nášho porovnania môžeme vidieť v Tab. 6. 
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Obr. 4 Pravdepodobnostný rozhodovací diagram s pravdepodobnosťami stavov komponentov 

znázornenými na hranách diagramu 

Algoritmy sme porovnávali pri výpočte pravdepodobností všetkých stavov 𝑚-stavového 

systému zloženého z 𝑛-komponentov so sériovo-paralelnou topológiou (prvé dva riadky 

tabuľky) a s náhodnou topológiou (posledné dva riadky tabuľky). Výsledky ukázali, že pri 

vyššom počte stavov systému je výhodnejšie použiť top-down algoritmus a, naopak, pri 

nižšom počte stavov systému je výhodnejší bottom-up algoritmus. Ďalším rozdielom, ktorý 

v práci popisujeme, a ktorý je potrebné pri výbere algoritmu zvážiť je, že jedno vykonanie 

top-down algoritmu umožňuje vypočítať individuálne pravdepodobnosti stavov systému ako 

aj dostupnosť pre rôzne úrovne. Na druhej strane jednoduchší bottom-up algoritmus 

umožňuje pri jednom vykonaní výpočet iba jednej charakteristiky. 

Tab. 6 Priemerný čas v milisekundách potrebný na výpočet pravdepodobnosti všetkých stavov 

systému 

𝒏 𝒎 Bottom-up 
Top-down 

[ms] 

50 000  3 15  20  

10 000  5 58  30  

40  3 1 621  1 925  

20  5 573  330  

 

4.5 Časovo závislé pravdepodobnostné výpočty 

Vo vyššie popísanom porovnaní prístupov k výpočtu NTP sme pracovali s konštantnými 

pravdepodobnosťami stavovo komponentov. Posledná časť práce sa venuje modifikácií 
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uvedených algoritmov, ktorá umožní pracovať aj s pravdepodobnosťami stavov 

komponentov, ktoré už nie sú jednoduchými konštantami, ale sú funkciami času. 

Prvým riešeným problémom je výpočet NTP (ktorá súhlasí s vybraným 

pravdepodobnostným ukazovateľom) v mnohých časových. Na riešenie tohto problému sme 

identifikovali dva prístupy, ktoré sme nazvali základný a symbolický. Základný prístup 

využíva algoritmus bottom-up alebo top-down bez modifikácií. V rámci dodatočného kroku 

však potrebuje vyhodnotiť všetky pravdepodobnosti stavov komponentov v danom čase 𝑡. 

Tento prístup môžeme stručne zosumarizovať nasledovným pseudokódom, ktorý prezentuje 

funkciu na výpočet dostupnosti systému vo všetkých časových okamihoch uložených 

v zozname timePoints: 

function EVALUATEBASIC(diagram, j, timePoints, ℙ) 

  for ∀ t ∈ timePoints do 

    ℙt ←EVALUATEDISTRIBUTIONS(ℙ, t) 

    values ← {a | j ≤ a < m} 

    A≥j (t) ←CALCULATENTPPOSTSTEP(diagram, values, ℙt) 

  end for 

end function. 

Symbolický prístup je založený na využití symbolických výpočtov, podľa ktorých nesie svoje 

pomenovanie. Podobne ako základný prístup využíva jeden z dvojice algoritmov. Tento však 

musí byť upravený alebo vhodne implementovaný tak, aby dokázal sčítavať a násobiť 

symbolické výrazy, ktoré môže byť reprezentované napríklad výrazovým stromom. Príklad 

takéhoto stromu môžeme vidieť na Obr. 5. 

 

Obr. 5 Výrazový strom reprezentujúci výraz, ktorý popisuje dostupnosť BSS; premenné 𝑝𝑖 a 𝑞𝑖 

reprezentujú pravdepodobnosti, že 𝑖-ty komponent funguje a nefunguje v tomto poradí 

Symbolický prístup tak najprv využije jeden z algoritmov na získanie výrazového stromu 

reprezentujúceho vybraný pravdepodobnostný ukazovateľ (napr. dostupnosť systému). 

Vstupom algoritmu je v tomto prípade matica symbolických výrazov. Následne už 
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vyhodnocuje iba získaný strom v každom časovom okamihu. Podobne ako pri základom 

prístupe môžeme symbolický prístup zosumarizovať nasledovným pseudokódom: 

function EVALUATESYMBOLIC(diagram, j, timePoints, ℙ) 

  exprTree ←CREATETREE(diagram, ℙ) 

  for ∀ t ∈ timePoints do 

    A≥j (t) ←EVALUATETREE(exprTree, t) 

  end for 

end function. 

V našej knižnici TeDDy [75] sme symbolický prístup implementovali pomocou knižnice 

GiNaC [105], ktorá podporuje prácu so symbolickými výrazmi v jazyku C++. 

Zaujímavou otázkou je ako sa dva uvedené prístupy líšia z pohľadu časovej 

náročnosti na výpočet pravdepodobnostného ukazovateľa v mnohých časových okamihoch. 

Za účelom preskúmania tohto rozdielu sme vykonali experimentálne porovnanie týchto 

prístupov pri výpočte dostupnosti náhodne generovaných sériovo-paralelných BSS. 

Výsledky tohto porovnania môžeme vidieť v Tab. 7. Stĺpce |BDD| a |Strom| obsahujú 

veľkosť danej štruktúry. Zvyšné stĺpce obsahujú celkový priemerný čas v nanosekundách 

potrebný na vyhodnotenie dostupnosti systému v 10 časových okamihoch. 

Tab. 7 Porovnanie základného a symbolického prístupu pri výpočte dostupnosti náhodne 

generovaných sériovo-paralelných systémov 

𝒏 |BDD| |Strom| 
Základný 

prístup [ns] 

Vytvorenie 

stromu [ns] 

Symbolické 

výpočty [ns] 

10 12 599 1 739 26 187 3 823 367 

20 22 15 218 3 606 51 791 101 280 004 

30 32 546 208 6 020 82 222 3 595 178 608 

40 42 11 494 828 7 401 103 151 72 100 562 769 

 

Výsledky experiment ukázali, že základný prístup funguje oveľa lepšie ako symbolický 

prístup, ak berieme do úvahy rýchlosť vyhodnotenia NTP. Podobné výsledky sme získali aj 

z iných experimentov, ktoré vyhodnocovali tisícky rôznych časových okamihov. Hoci 

výsledky sú špecifické pre našu implementáciu – knižnicu TeDDy a knižnicu GiNaC na 

manipuláciu s výrazmi –relatívny rozdiel medzi oboma prístupmi je značný. Preto je 

nepravdepodobné, že by sa pri iných implementáciách výrazne zmenil. 

Symbolický prístup dosahuje v porovnaní so základným pomerne zlé výsledky. Na 

druhej strane nám však poskytuje možnosti, ktoré nemôžeme základným prístupom 

dosiahnuť. Jednou z nich je napríklad možnosť získať výraz popisujúci pravdepodobnostný 
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ukazovateľ. Výraz môžeme analyzovať napríklad použitím knižnice GiNaC alebo ho 

môžeme exportovať do systému ako napr. Matlab alebo wxMaxima. 

5 Záver 

Práca sa zaoberala aplikáciou rozhodovacích diagramov pri analýze spoľahlivosti 

komplexných systémov. Poskytla obsiahly prehľad krokov procesu analýzy spoľahlivosti so 

zameraním na algoritmy založené na využití rozhodovacích diagramov reprezentujúcich 

štruktúrnu funkciu. Ďalej predstavila niekoľko nových algoritmov a poskytla rôzne 

vylepšenia a zovšeobecnenia existujúcich algoritmov. Prínosom práce sú výsledky riešenia 

nasledujúcich výskumných problémov:         

• Analýza existujúcich prístupov a algoritmov používaných pri reprezentácii 

štruktúrnej funkcie pomocou rozhodovacích diagramov a ich následná analýza: 

✓ v úvodnej časti práca predstavila všeobecné prístupy používané pri 

analýze spoľahlivosti; 

✓ ďalej opísala diskrétne funkcie ako matematický základ štruktúrnej 

funkcie a spôsoby ich analýzy a reprezentácie; 

✓ nakoniec úvodnej časti sa zaoberala rozhodovacími diagramami a ich 

aplikáciami v analýze spoľahlivosti. 

• Implementácia výkonnej a robustnej softvérovej knižnice na tvorbu 

a manipuláciu s rozhodovacími diagramami: 

✓ prvá časť jadra práce predstavila základné aspekty softvérovej 

knižnice na tvorbu a manipuláciu s rozhodovacími diagramami; 

✓ všetky algoritmy a techniky opísané v práci boli implementované 

v open-source knižnici TeDDy. 

• Vyhodnocovanie, úprava a zlepšovanie existujúcich algoritmov na tvorbu 

a manipuláciu s rozhodovacími diagramami; 

✓ praktická časť práce poskytla experimentálne porovnanie rôznych 

spôsobov poradia vyhodnocovania algoritmu aplikácie; 

✓ ďalej vyhodnotila rôzne prístupy k reprezentácii štruktúrnej funkcie 

sériovo-paralelných systémov; 

✓ práca tiež predstavila univerzálny algoritmus na výpočet stavových 

frekvencie stavov systému. 
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• Vytvorenie nových algoritmov a metód rozhodovacích diagramov 

špecializovaných na prípad použitia topologickej a pravdepodobnostnej analýzy 

spoľahlivosti: 

✓ práca predstavila zovšeobecnenú verziu algoritmu na dynamickú 

tvorbu rozhodovacích diagramov; 

✓ nakoniec predstavila nový univerzálny algoritmus na efektívny 

výpočet ľubovoľných logických derivácií. 

Záverom možno konštatovať, že hlavným prínosom tejto práce je opis optimalizácie tvorby 

a manipulácie s rozhodovacími diagramami pre analýzu spoľahlivosti rozsiahlych 

komplexných systémov. Opis zahŕňa existujúce techniky a algoritmy, ako aj nové algoritmy 

navrhnuté v tejto práci. Napokon, významným praktickým prínosom je softvérová knižnica 

s otvoreným zdrojovým kódom špecializovaná na analýzu spoľahlivosti pomocou 

rozhodovacích diagramov. 
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Appendix A – Pseudocodes 

Appendix A contains pseudocodes of existing algorithms referenced from the main sections 

of the thesis. The presented pseudocodes were introduced in the referenced literature and are 

not an original contribution of this thesis. All the pseudocodes were adjusted to conform to 

the style, notation, and conventions used in this thesis. Otherwise, they contain little to no 

modification of the original ideas, though, in some algorithms, we present a simple 

straightforward generalization of an algorithm originally proposed just for BDDs. Finally, 

considering the implementation aspects, the pseudocodes assume, for simplicity, that the 

diagrams use the default order of variables i.e., that for an internal node 𝐴 it holds that 

INDEX(𝐴) = LEVEL(𝐴). 

procedure CREATETERMINALNODE(value) 

  if CONTAINS(terminalTable, value) then 

    return LOOKUP(terminalTable, value) 

  else 

    node ← TERMINALNODE(value)   ▷ Create new terminal node 

    PUT(terminalTable, value, node) 

    return node 

  end if 

end procedure 

Alg. A.1 Factory function for the creation of terminal nodes commonly used in decision diagram 

packages 

procedure CREATEINTERNALNODE(index, sons) 

  if ISREDUNDANT(sons) then 

    return HEAD(sons)    ▷ Return the first element 

  else if CONTAINS(uniqueTable, (index, sons)) then 

    return LOOKUP(uniqueTable, (index, sons)) 

  else 

    node ← INTERNALNODE(index, sons)  ▷ Create new internal node 

    PUT(uniqueTable, (index, sons), node) 

    return node 

  end if 

end procedure 

Alg. A.2 Factory functions for the creation of internal nodes commonly used in decision diagram 

packages 

  



DISSERTATION THESIS 

155 

 

procedure FROMVECTOR(vector) 

  stack ← MAKEEMPTYSTACK 

  j ← 0 

  while j < SIZE(vector) do 

    sons ← MAKETUPLE(mn)   ▷ Create tuple of mn elements 

    for k = 0 to mn do 

      sons[k] ← CREATETERMINALNODE(vector[j]) 

      INCREMENT(j) 

    end for 

    node ← CREATEINTERNALNODE(n, sons) 

    PUSH(stack, (node, n)) 

    SHRINKSTACK(stack) 

  end while 

  (root, _) ← PEEK(stack) 

  return MDD(root) 

end procedure 

 

procedure SHRINKSTACK(stack) 

  loop 

    (node, i) ← PEEK(stack) 

    if i = 1 then     ▷ Peeked node is the root node 

      return 

    end if 

    k ← 0 

    count ← 0 

    repeat 

      (_, j) ← PEEK(stack, k)    ▷ Peek kth element from the top 

      if j = i then 

        count ← count + 1 

      end if 

      k ← k + 1 

    until k < SIZE(stack) ∧ i = j 

    if count < mi − 1 then 

      return 

    end if 

    sons ← MAKETUPLE(mi − 1) 

    for k = 0 to mi − 1 do 

      (son, _) ← POP(stack) 

      sons[k] ← son 

    end for 

    node ← CREATEINTERNALNODE(i − 1, sons) 

    PUSH(stack, (node, i − 1)) 

  end loop 

end procedure 

Alg. A.3 From-vector – static algorithm for the creation of MDD from truth vector [80]  
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procedure APPLY(left, right, ⊙) 

  root ← APPLYSTEP(ROOT(left), ROOT(right), ⊙) 

  return MDD(root) 

end procedure 

 

procedure APPLYSTEP(left, right, ⊙) 

  if CONTAINS(applyCache, (left, right)) then 

    return LOOKUP(applyCache, (left, right)) 

  end if  

  if ISTERMINAL(left) ∧ ISTERMINAL(right) then 

    node ← CREATETERMINALNODE(VALUE(left) ⊙ VALUE(right)) 

  else if ISABSORBINGTTERMINAL(⊙, left) ∨ ISABSORBINGTTERMINAL(⊙, right) then 

    node ← CREATETERMINALNODE(ABSORBINGELEMENT(⊙)) 

  else 

    ilhs ← LEVEL(left) 

    irhs ← LEVEL(right) 

    i ← min(ilhs, irhs) 

    sons ← MAKETUPLE(mi) 

    for k = 0 to mi do 

      if ilhs < irhs then 

        sons[k] ← APPLYSTEP(SON(left, k), right) 

      else 

        sons[k] ← APPLYSTEP(left, SON(right, k)) 

      end if 

    end for 

    node ← CREATEINTERNALNODE(i, sons) 

  end if 

  PUT(applyCache, (left, right), node) 

  return node 

end procedure 

Alg. A.4 Entry point ant the recursive step of the apply algorithm [11], [12] 
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procedure SATISFYCOUNT(diagram, value) 

  root ← ROOT(diagram) 

  iroot ← INDEX(root) 

  diff ← DOMAINPRODUCT(1, iroot) 

  count ← diff ∗ SATISFYCOUNTSTEP(root, value) 

  return count 

end procedure 

 

procedure SATISFYCOUNTSTEP(node, value) 

  if ISTERMINAL(node) ∧ VALUE(node) = j then 

    return 1 

  end if 

  if ISTERMINAL(node) ∧ VALUE(node) ≠ j then 

    return 0 

  end if 

  if CONTAINS(memo, node) then 

    return LOOKUP(memo, node) 

  end if 

  count ← 0 

  i ← LEVEL(node) 

  for k = 0 to mi do 

    son ← SON(node, k) 

    ison ← LEVEL(son)  

    sonCount ← SATISFYCOUNTSTEP(son, value)  

    diff ← DOMAINPRODUCT(i, ison) 

    count ← diff ∗ sonCount 

  end for 

  PUT(memo, node, count) 

  return count 

end procedure 

 

procedure DOMAINPRODUCT(i1, i2) 

  product ← 1 

  i ← i1 

  while i < i2 do 

    product ← product ∗ mi 

    i ← i + 1 

  end while 

  return product 

end procedure 

Alg. A.5 Entry point and the recursive step of the satisfy-count algorithm [11] 
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procedure COFACTOR(diagram, i, a) 

  root ← ROOT(diagram) 

  if ISTERMINAL(root) then 

    return diagram 

  else if INDEX(root) = i then 

    newRoot ← SON(root, a) 

    return MDD(newRoot) 

  else 

    newRoot ← COFACTORSTEP(root, i, a) 

    return MDD(newRoot) 

  end if 

end procedure 

 

procedure COFACTORSTEP(node, i, a) 

  if CONTAINS(memo, node) then 

    return LOOKUP(memo, node) 

  end if 

  if ISTERMINAL(node) then 

    return node 

  end if 

  if INDEX(node) = i then 

    return SON(node, a)  

  end if 

  if INDEX(node) > i then 

    return node 

  end if 

  j ← INDEX(node) 

  sons ← MAKETUPLE(mj) 

  for k = 0 to mj do 

    oldSon ← SON(node, k) 

    sons[k] ← COFACTORSTEP(oldSon, i, a) 

  end for 

  newNode ← CREATEINTERNALNODE(j, sons)  

  PUT(memo, node, newNode) 

  return newNode 

end procedure 

Alg. A.6 Entry point and the recursive step of the cofactor algorithm [11] 
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procedure CALCULATENTPPOSTSTEP(node, values) 

  if ISTERMINAL(node) then 

    value ← VALUE(node) 

    if CONTAINS(values, value) then 

      return 1.0 

    else 

      return 0.0 

    end if 

  end if 

  if CONTAINS(memo) then 

    return LOOKUP(memo, node) 

  end if 

  i ← INDEX(node) 

  resut ← 0.0 

  for k = 0 to mi do 

    son ← SON(node, k) 

    sonProb ← CALCULATENTPPOSTSTEP(son, values) 

    result ← result + sonProb ∗ pi,k 

  end for 

  PUT(memo, node, result) 

  return result 

end procedure 

Alg. A.7 Post-order NTP calculation algorithm (bottom-up approach) [10] 
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procedure CALCULATENTPLEVEL(diagram) 

  root ← ROOT(diagram) 

  stacks ← ARRAY(n + 2)   ▷ Create an array of stacks (queues or lists can also be used) 

  stackIndex ← INDEX(root) 

  PUSH(stacks[stackIndex], root) 

  PUT(memo, root, 1.0) 

  while stackIndex < n + i do 

    stack ← stacks[stackIndex] 

    while ISNOTEMPTY(stack) do 

      node ← POP(stack) 

      i ← INDEX(node) 

      if ISINTERNAL(node) then 

        nodeNTP ← LOOKUP(memo, node) 

        for k = 0 to mi do 

          son ← SON(node, k) 

          if CONTAINS(memo, son) then 

            sonNTP ← LOOKUP(memo, son) 

          else 

            sonNTP ← 0.0 

            ison ← INDEX(son) 

            PUSH(stacks[ison], son) 

          end ifs 

          sonNTP ← sonNTP + nodeNTP ∗ pi,k 

          PUT(memo, son, sonNTP) 

        end for 

      end if 

    end while 

    while stackIndex < n + 1 ∧ ISEMPTY(stacks[stackIndex]) do 

      stackIndex ← stackIndex + 1 

    end while 

  end while 

  return memo 

end procedure 

Alg. A.8 Level-order NTP calculation algorithm (top-down approach) [10] 
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