TeDDy 4.1.0
Decision diagram library.
Loading...
Searching...
No Matches
probabilities.hpp
1#ifndef LIBTEDDY_PROBABILITIES_HPP
2#define LIBTEDDY_PROBABILITIES_HPP
3
4#include <libteddy/details/config.hpp>
5#include <libteddy/details/types.hpp>
6
7#include <array>
8#include <cassert>
9#include <cmath>
10#include <concepts>
11#include <functional>
12#include <ostream>
13#include <variant>
14#include <vector>
15
16#ifdef LIBTEDDY_SYMBOLIC_RELIABILITY
17# include <ginac/ginac.h>
18#endif
19
20namespace teddy::probs::details
21{
25template<class Vector>
27{
28public:
29 prob_vector_wrap_proxy(Vector const& vec, std::size_t const index) :
30 index_(index),
31 vec_(&vec)
32 {
33 }
34
35 auto operator[] (std::size_t const value) const -> double
36 {
37 assert(value == 1 || value == 0);
38 double const prob = (*vec_)[index_];
39 return value == 1 ? prob : 1 - prob;
40 }
41
42private:
43 std::size_t index_;
44 Vector const* vec_;
45};
46
50template<class Vector>
52{
53public:
54 prob_vector_wrap(Vector const& vec) : vec_(&vec)
55 {
56 }
57
58 auto operator[] (std::size_t const index) const
59 {
60 return prob_vector_wrap_proxy<Vector>(*vec_, index);
61 }
62
63private:
64 Vector const* vec_;
65};
66
72{
73public:
74 auto set_t (double const t) -> void
75 {
76 t_ = t;
77 }
78
79protected:
80 double t_ {0};
81};
82} // namespace teddy::probs::details
83
84namespace teddy::probs
85{
89template<class Probabilities>
90concept prob_vector = requires(Probabilities probs, int32 index) {
91 {
92 probs[index]
93 } -> std::convertible_to<double>;
94 };
95
99template<class Probabilities>
100concept prob_matrix = requires(Probabilities probs, int32 index, int32 value) {
101 {
102 probs[index][value]
103 } -> std::convertible_to<double>;
104 };
105
110{
111public:
112 exponential(double const rate) : rate_(rate)
113 {
114 }
115
116 [[nodiscard]] operator double () const
117 {
118 return (*this)(dist_base::t_);
119 }
120
121 [[nodiscard]] auto operator() (double const t) const -> double
122 {
123 return rate_ * std::exp(-rate_ * t);
124 }
125
126private:
127 double rate_;
128};
129
134{
135public:
136 weibull(double const scale, double const shape) :
137 scale_(scale),
138 shape_(shape)
139 {
140 }
141
142 [[nodiscard]] operator double () const
143 {
144 return (*this)(dist_base::t_);
145 }
146
147 [[nodiscard]] auto operator() (double const t) const -> double
148 {
149 return (shape_ / scale_) * std::pow(t / scale_, shape_ - 1)
150 * std::exp(-std::pow(t / scale_, shape_));
151 }
152
153private:
154 double scale_;
155 double shape_;
156};
157
162{
163public:
164 constant(double const value) : value_(value)
165 {
166 }
167
168 [[nodiscard]] operator double () const
169 {
170 return value_;
171 }
172
173 [[nodiscard]] auto operator() (double const) const -> double
174 {
175 return value_;
176 }
177
178private:
179 double value_;
180};
181
186{
187public:
188 custom_dist(std::function<double(double)> dist) : dist_(dist)
189 {
190 }
191
192 [[nodiscard]] operator double () const
193 {
194 return (*this)(dist_base::t_);
195 }
196
197 [[nodiscard]] auto operator() (double const t) const -> double
198 {
199 return dist_(t);
200 }
201
202private:
203 std::function<double(double)> dist_;
204};
205
206using dist_variant = std::variant<exponential, weibull, constant, custom_dist>;
207
212{
213public:
214 prob_dist(dist_variant dist) : dist_(dist)
215 {
216 }
217
218 auto set_t (double const t) -> void
219 {
220 std::visit([t] (auto& d) { d.set_t(t); }, dist_);
221 }
222
223 [[nodiscard]] operator double () const
224 {
225 return std::visit(
226 [] (auto const& dist) -> double { return dist; },
227 dist_
228 );
229 }
230
231 [[nodiscard]] auto operator() (double const t) const -> double
232 {
233 return std::visit(
234 [t] (auto const& dist) -> double { return dist(t); },
235 dist_
236 );
237 }
238
239private:
240 dist_variant dist_;
241};
242
243template<class T>
244concept dist_vector = requires(T t, std::size_t i) {
245 {
246 t[i]
247 } -> std::convertible_to<prob_dist>;
248
249 t[i].set_t(3.14);
250 };
251
252template<class T>
253concept dist_matrix = requires(T t, std::size_t i) {
254 {
255 t[i][i]
256 } -> std::convertible_to<prob_dist>;
257
258 t[i][i].set_t(3.14);
259 };
260
261template<dist_vector Ps>
262auto at_time (Ps& distVector, double const t) -> Ps&
263{
264 for (auto& dist : distVector)
265 {
266 dist.set_t(t);
267 }
268 return distVector;
269}
270
271template<dist_matrix Ps>
272auto at_time (Ps& distMatrix, double const t) -> Ps&
273{
274 for (auto& dists : distMatrix)
275 {
276 for (auto& dist : dists)
277 {
278 dist.set_t(t);
279 }
280 }
281 return distMatrix;
282}
283} // namespace teddy::probs
284
285#ifdef LIBTEDDY_SYMBOLIC_RELIABILITY
286namespace teddy::symprobs::details
287{
288inline GiNaC::symbol& time_symbol ()
289{
290 static GiNaC::realsymbol t("t");
291 return t;
292}
293} // namespace teddy::symprobs::details
294
295namespace teddy::symprobs
296{
300class expression
301{
302public:
303 expression(GiNaC::ex ex) : ex_(ex)
304 {
305 }
306
307 auto evaluate (double const t) const -> double
308 {
309 GiNaC::ex result = GiNaC::evalf(ex_.subs(details::time_symbol() == t));
310 return GiNaC::ex_to<GiNaC::numeric>(result).to_double();
311 }
312
313 auto as_underlying_unsafe () const -> GiNaC::ex
314 {
315 return ex_;
316 }
317
318 auto to_latex (std::ostream& ost) const -> void
319 {
320 ost << GiNaC::latex << ex_ << GiNaC::dflt;
321 }
322
323 // TODO
324 auto to_matlab (std::ostream& ost) const -> void
325 {
326 ost << ex_;
327 }
328
329private:
330 GiNaC::ex ex_;
331};
332
336inline auto exponential (double const rate) -> expression
337{
338 return {rate * GiNaC::exp(-rate * details::time_symbol())};
339}
340
344inline auto weibull (double const shape, double const scale) -> expression
345{
346 return {
347 (shape / scale) * GiNaC::pow(details::time_symbol() / scale, shape - 1)
348 * GiNaC::exp(-GiNaC::pow(details::time_symbol() / scale, shape))};
349}
350
354inline auto constant (double prob) -> expression
355{
356 return GiNaC::ex(prob);
357}
358
362inline auto complement (expression const& other) -> expression
363{
364 return GiNaC::ex(1) - other.as_underlying_unsafe();
365}
366
370template<class Ps> // TODO concept?
371auto as_matrix (Ps const& probs) -> std::vector<std::array<expression, 2>>
372{
373 std::vector<std::array<expression, 2>> matrix;
374 for (expression const& expr : probs)
375 {
376 matrix.push_back(std::array {complement(expr), expr});
377 }
378 return matrix;
379}
380} // namespace teddy::symprobs
381#endif
382
383#endif
Probability independent of time.
Definition probabilities.hpp:162
User-defined distribution.
Definition probabilities.hpp:186
Base class for probability distributions. Just holds time member that is common for all.
Definition probabilities.hpp:72
Helper for vector wrap.
Definition probabilities.hpp:27
Wraps prob. vector so that it can be used as matrix.
Definition probabilities.hpp:52
Exponential distribution.
Definition probabilities.hpp:110
"Interface" for distributions that manages variant access
Definition probabilities.hpp:212
Weibull distribution.
Definition probabilities.hpp:134
Definition probabilities.hpp:253
Definition probabilities.hpp:244
Matrix of probabilities for BSS and MSS.
Definition probabilities.hpp:100
Vector of probabilities for BSS.
Definition probabilities.hpp:90